Zobrazeno 1 - 10
of 192
pro vyhledávání: '"Dhiaf A"'
Document analysis and understanding models often require extensive annotated data to be trained. However, various document-related tasks extend beyond mere text transcription, requiring both textual content and precise bounding-box annotations to ide
Externí odkaz:
http://arxiv.org/abs/2311.11856
The Transformer has quickly become the dominant architecture for various pattern recognition tasks due to its capacity for long-range representation. However, transformers are data-hungry models and need large datasets for training. In Handwritten Te
Externí odkaz:
http://arxiv.org/abs/2303.13931
CSSL-MHTR: Continual Self-Supervised Learning for Scalable Multi-script Handwritten Text Recognition
Autor:
Dhiaf, Marwa, Souibgui, Mohamed Ali, Wang, Kai, Liu, Yuyang, Kessentini, Yousri, Fornés, Alicia, Rouhou, Ahmed Cheikh
Self-supervised learning has recently emerged as a strong alternative in document analysis. These approaches are now capable of learning high-quality image representations and overcoming the limitations of supervised methods, which require a large am
Externí odkaz:
http://arxiv.org/abs/2303.09347
Publikováno v:
Pattern Recognition Letters, 2022
The extraction of relevant information carried out by named entities in handwriting documents is still a challenging task. Unlike traditional information extraction approaches that usually face text transcription and named entity recognition as separ
Externí odkaz:
http://arxiv.org/abs/2112.04189
Autor:
El Khoury, Rim, Nasrallah, Nohade, Atayah, Osama F., Dhiaf, Mohamed Mahjoub, Frederico, Guilherme F.
Publikováno v:
Benchmarking: An International Journal, 2022, Vol. 30, Issue 6, pp. 2139-2165.
Externí odkaz:
http://www.emeraldinsight.com/doi/10.1108/BIJ-11-2021-0636
Publikováno v:
International Journal of Quality & Reliability Management, 2023, Vol. 40, Issue 5, pp. 1343-1361.
Externí odkaz:
http://www.emeraldinsight.com/doi/10.1108/IJQRM-03-2022-0106
Autor:
Almansour, Bashar Yaser, Alshater, Muneer M., Marashdeh, Hazem, Dhiaf, Mohamed, Atayah, Osama F.
Publikováno v:
Competitiveness Review: An International Business Journal, 2022, Vol. 33, Issue 1, pp. 107-119.
Externí odkaz:
http://www.emeraldinsight.com/doi/10.1108/CR-12-2021-0188
Autor:
Najaf, Khakan, Dhiaf, Mohamed M., Nasrallah, Nohade Hanna, Atayah, Osama F., Marashdeh, Hazem
Publikováno v:
Journal of Humanitarian Logistics and Supply Chain Management, 2022, Vol. 12, Issue 4, pp. 554-569.
Autor:
Marashdeh, Hazem, Dhiaf, Mohamed M., Atayah, Osama F., Nasrallah, Nohade, Frederico, Guilherme F., Najaf, Khakan
Publikováno v:
In Socio-Economic Planning Sciences June 2023 87 Part A
Publikováno v:
Journal of Humanitarian Logistics and Supply Chain Management, Vol 12, Iss 4, Pp 554-569 (2022)
Purpose – This study contributes to the extant literature on ICT firms by investigating the interrelationship between the health and safety (H&S) measures, market performance, and the coronavirus (COVID-19). Design/methodology/approach – To condu
Externí odkaz:
https://doaj.org/article/0a88f83f49964eba9f45c820c4d7674b