Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Dharshi Devendran"'
Publikováno v:
Communications in Applied Mathematics and Computational Science, vol 12, iss 1
Commun. Appl. Math. Comput. Sci. 12, no. 1 (2017), 51-79
Devendran, D; Graves, DT; Johansen, H; & Ligocki, T. (2017). A fourth-order cartesian grid embedded boundary method for poisson's equation. Communications in Applied Mathematics and Computational Science, 12(1), 51-79. doi: 10.2140/camcos.2017.12.51. Lawrence Berkeley National Laboratory: Retrieved from: http://www.escholarship.org/uc/item/9b97g2dg
Commun. Appl. Math. Comput. Sci. 12, no. 1 (2017), 51-79
Devendran, D; Graves, DT; Johansen, H; & Ligocki, T. (2017). A fourth-order cartesian grid embedded boundary method for poisson's equation. Communications in Applied Mathematics and Computational Science, 12(1), 51-79. doi: 10.2140/camcos.2017.12.51. Lawrence Berkeley National Laboratory: Retrieved from: http://www.escholarship.org/uc/item/9b97g2dg
Author(s): Devendran, D; Graves, DT; Johansen, H; Ligocki, T | Abstract: In this paper, we present a fourth-order algorithm to solve Poisson's equation in two and three dimensions. We use a Cartesian grid, embedded boundary method to resolve complex
Autor:
Bin Dong, Dharshi Devendran, Xiaocheng Zou, Kesheng Wu, Houjun Tang, Scott Klasky, Steve Harenberg, Daniel F. Martin, Nagiza F. Samatova, Wenzhao Zhang, Suren Byna, David Trebotich
Publikováno v:
ICPP
Analyses of large simulation data often concentrate on regions in space and in time that contain important information. As simulations adopt Adaptive Mesh Refinement (AMR), the data records from a region of interest could be widely scattered on stora
Autor:
Xiaocheng Zou, Surendra Byna, Nagiza F. Samatova, Wenzhao Zhang, Daniel F. Martin, Steve Harenberg, Bin Dong, Dharshi Devendran, Houjun Tang, Kesheng Wu, Scott Klasky
Publikováno v:
CCGrid
Zhang, Wenzhao; Tang, Houjun; Harenberg, Steven; Byna, Suren; Zou, Xiaocheng; Devendran, Dharshi; et al.(2016). AMRZone: A Runtime AMR Data Sharing Framework For Scientific Applications:. Lawrence Berkeley National Laboratory: Lawrence Berkeley National Laboratory. Retrieved from: http://www.escholarship.org/uc/item/2039k2m6
Zhang, Wenzhao; Tang, Houjun; Harenberg, Steven; Byna, Suren; Zou, Xiaocheng; Devendran, Dharshi; et al.(2016). AMRZone: A Runtime AMR Data Sharing Framework For Scientific Applications:. Lawrence Berkeley National Laboratory: Lawrence Berkeley National Laboratory. Retrieved from: http://www.escholarship.org/uc/item/2039k2m6
Frameworks that facilitate runtime data sharing across multiple applications are of great importance for scientific data analytics. Although existing frameworks work well over uniform mesh data, they can not effectively handle adaptive mesh refinemen
Publikováno v:
Monthly Weather Review, vol 144, iss 4
Ullrich, PA; Devendran, D; & Johansen, H. (2016). Arbitrary-order conservative and consistent remapping and a theory of linear maps: Part II. Monthly Weather Review, 144(4), 1529-1549. doi: 10.1175/MWR-D-15-0301.1. Lawrence Berkeley National Laboratory: Retrieved from: http://www.escholarship.org/uc/item/4b22p5q4
Ullrich, PA; Devendran, D; & Johansen, H. (2016). Arbitrary-order conservative and consistent remapping and a theory of linear maps: Part II. Monthly Weather Review, 144(4), 1529-1549. doi: 10.1175/MWR-D-15-0301.1. Lawrence Berkeley National Laboratory: Retrieved from: http://www.escholarship.org/uc/item/4b22p5q4
This paper extends on the first part of this series by describing four examples of 2D linear maps that can be constructed in accordance with the theory of the earlier work. The focus is again on spherical geometry, although these techniques can be re
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::222a75d6162d0f08ec5dac6a975c6308
https://escholarship.org/uc/item/4b22p5q4
https://escholarship.org/uc/item/4b22p5q4
Autor:
Dharshi Devendran, Charles S. Peskin
Publikováno v:
Journal of Computational Physics. 231:4613-4642
Incompressible viscoelastic materials are prevalent in biological applications. In this paper we present a method for incompressible viscoelasticity in which the elasticity of the material is described in Lagrangian form (i.e. in material coordinates
Autor:
Daniel Graves, Terry J. Ligocki, Phillip Colella, Eli Ateljevich, Dharshi Devendran, Julie Percelay, Hans Johansen, Peter Schwartz
Publikováno v:
Commun. Appl. Math. Comput. Sci. 10, no. 1 (2015), 83-96
We present an algorithm to produce the necessary geometric information for finite volume calculations in the context of Cartesian grids with embedded boundaries. Given an order of accuracy for the overall calculation, we show what accuracy is require
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9fe9b94c373a2e67a5789399ca1541d5
https://projecteuclid.org/euclid.camcos/1510858402
https://projecteuclid.org/euclid.camcos/1510858402