Zobrazeno 1 - 10
of 58
pro vyhledávání: '"Dharmendra S, Modha"'
Autor:
Peter J. Carlson, Michael DeBole, John V. Arthur, Myron D. Flickner, Scott Lekuch, Jeffrey L. McKinstry, Andrew S. Cassidy, Michael Mastro, Jeff Kusnitz, Brian Taba, Carmelo di Nolfo, Rathinakumar Appuswamy, Jun Sawada, Steven K. Esser, Pallab Datta, Brent Paulovicks, Klamo Jennifer, Kai Schleupen, Kevin L. Holland, Arnon Amir, Guillaume J. Garreau, Filipp Akopyan, Dharmendra S. Modha, Benjamin G. Shaw, Alexander Andreopoulos, Tapan K. Nayak, Carlos Tadeo Ortega Otero, William P. Risk
Publikováno v:
Computer. 52:20-29
IBM's brain-inspired processor is a massively parallel neural network inference engine containing 1 million spiking neurons and 256 million low-precision synapses. Now, after a decade of fundamental research spanning neuroscience, architecture, chips
Autor:
Nabil eImam, Thomas A. Cleland, Rajit eManohar, Paul A. Merolla, John V. Arthur, Filipp eAkopyan, Dharmendra S. Modha
Publikováno v:
Frontiers in Neuroscience, Vol 6 (2012)
We present a biomimetic system that captures essential functional properties of the glomerular layer of the mammalian olfactory bulb, specifically including its capacity to decorrelate similar odor representations without foreknowledge of the statist
Externí odkaz:
https://doaj.org/article/bbd1f2e7a6154b6296f2e1d06e2a7751
Autor:
Dharmendra S Modha
Publikováno v:
PLoS ONE, Vol 4, Iss 6, p e5693 (2009)
Volumetric, slice-based, 3-D atlases are invaluable tools for understanding complex cortical convolutions. We present a simple scheme to convert a slice-based atlas to a conceptual surface atlas that is easier to visualize and understand. The key ide
Externí odkaz:
https://doaj.org/article/26aacba9d1b74c04bacf810214c891a3
Autor:
Bryan L. Jackson, Andrew S. Cassidy, John V. Arthur, Myron D. Flickner, Jack Sampson, R Davis, Dharmendra S. Modha, Alexander Andreopoulos, Wei-Yu Tsai, Michael DeBole, Vijaykrishnan Narayanan
Publikováno v:
IEEE Transactions on Computers. 66:996-1007
Deep neural networks (DNN) have been shown to be very effective at solving challenging problems in several areas of computing, including vision, speech, and natural language processing. However, traditional platforms for implementing these DNNs are o
Autor:
Rathinakumar Appuswamy, Jeffrey L. McKinstry, Izzet B. Yildiz, Deepika Bablani, Dharmendra S. Modha, Steven K. Esser, John V. Arthur
Publikováno v:
EMC2@NeurIPS
To realize the promise of ubiquitous embedded deep network inference, it is essential to seek limits of energy and area efficiency. Low-precision networks offer promise as energy and area scale down quadratically with precision. We demonstrate 8- and
Autor:
Dharmendra S. Modha, Bruno U. Pedroni, John V. Arthur, Srinjoy Das, Gert Cauwenberghs, Bryan L. Jackson, Kenneth Kreutz-Delgado, Paul A. Merolla
Publikováno v:
IEEE Transactions on Biomedical Circuits and Systems. 10:837-854
Stochastic neural networks such as Restricted Boltzmann Machines (RBMs) have been successfully used in applications ranging from speech recognition to image classification. Inference and learning in these algorithms use a Markov Chain Monte Carlo pro
Autor:
Bryan L. Jackson, Rajit Manohar, Andrew S. Cassidy, Brian Taba, Gi-Joon Nam, Paul A. Merolla, Rodrigo Alvarez-Icaza, William P. Risk, Jente B. Kuang, Pallab Datta, Filipp Akopyan, Michael P. Beakes, John V. Arthur, Nabil Imam, Bernard Brezzo, Yutaka Nakamura, Dharmendra S. Modha, Jun Sawada
Publikováno v:
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 34:1537-1557
The new era of cognitive computing brings forth the grand challenge of developing systems capable of processing massive amounts of noisy multisensory data. This type of intelligent computing poses a set of constraints, including real-time operation,
Autor:
Michael DeBole, Alexander Andreopoulos, David Berg, Brian Taba, Arnon Amir, Jeffrey L. McKinstry, Marcela Mendoza, Timothy Melano, Dharmendra S. Modha, Tapan K. Nayak, Jeff Kusnitz, Steve K. Esser, Guillaume Garreau, Tobi Delbruck, Myron D. Flickner, Carmelo di Nolfo
Publikováno v:
CVPR
We present the first gesture recognition system implemented end-to-end on event-based hardware, using a TrueNorth neurosynaptic processor to recognize hand gestures in real-time at low power from events streamed live by a Dynamic Vision Sensor (DVS).
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e375371de0f2cc1090ac170933a7a400
https://www.zora.uzh.ch/id/eprint/149342/
https://www.zora.uzh.ch/id/eprint/149342/
Autor:
Bryan L. Jackson, Filipp Akopyan, Andrew S. Cassidy, Arnon Amir, Rodrigo Alvarez-Icaza, Rajit Manohar, Steven K. Esser, Paul A. Merolla, John V. Arthur, Myron D. Flickner, Dharmendra S. Modha, Jun Sawada, Yutaka Nakamura, William P. Risk, Ivan Vo, Bernard Brezzo, Rathinakumar Appuswamy, Brian Taba, Nabil Imam, Chen Guo
Publikováno v:
Science. 345:668-673
Modeling computer chips on real brains Computers are nowhere near as versatile as our own brains. Merolla et al. applied our present knowledge of the structure and function of the brain to design a new computer chip that uses the same wiring rules an
Autor:
Greg S. Corrado, Roger W. Cheek, Dharmendra S. Modha, Chung H. Lam, Simone Raoux, B. N. Kurdi, Bryan L. Jackson, Alvaro Padilla, Kailash Gopalakrishnan, R. S. Shenoy, Charles T. Rettner, A. G. Schrott, Geoffrey W. Burr, Bipin Rajendran, Matthew J. Breitwisch
Publikováno v:
ACM Journal on Emerging Technologies in Computing Systems. 9:1-20
The memory capacity, computational power, communication bandwidth, energy consumption, and physical size of the brain all tend to scale with the number of synapses, which outnumber neurons by a factor of 10,000. Although progress in cortical simulati