Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Dhannya, S. M."'
Publikováno v:
Discrete Mathematics & Theoretical Computer Science, vol. 25:3 special issue ICGT'22, Special issues (November 30, 2023) dmtcs:10762
Given a set system $\mathcal{X} = \{\mathcal{U},\mathcal{S}\}$, where $\mathcal{U}$ is a set of elements and $\mathcal{S}$ is a set of subsets of $\mathcal{U}$, an exact hitting set $\mathcal{U}'$ is a subset of $\mathcal{U}$ such that each subset in
Externí odkaz:
http://arxiv.org/abs/2301.00387
Autor:
Dhannya, S. M., Narayanaswamy, N. S.
Given a hypergraph $H$, the conflict-free colouring problem is to colour vertices of $H$ using minimum colours so that each hyperedge in $H$ sees a unique colour. We present a polynomial time reduction from the conflict-free colouring problem in hype
Externí odkaz:
http://arxiv.org/abs/1812.01459
Autor:
Dhannya, S. M., Narayanaswamy, N. S.
The $k$-Strong Conflict-Free ($k$-SCF, in short) colouring problem seeks to find a colouring of the vertices of a hypergraph $H$ using minimum number of colours so that in every hyperedge $e$ of $H$, there are at least $\min\{|e|,k\}$ vertices whose
Externí odkaz:
http://arxiv.org/abs/1707.05071
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Dhannya, S. M., Narayanaswamy, N. S.
Given a hypergraph H, the conflict-free colouring problem is to colour vertices of H using minimum colours so that in every hyperedge e of H, there is a vertex whose colour is different from that of all other vertices in e. Our results are on a varia
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::c653ae951dcb08341f64da789e2a7d4b