Zobrazeno 1 - 10
of 33
pro vyhledávání: '"Dey, Subhankar"'
Autor:
Binns, Fraser, Dey, Subhankar
Martin showed that link Floer homology detects braid axes. In this paper we extend this result to give a topological characterisation of links which are almost braided from the point of view of link Floer homology. The result is inspired by work of B
Externí odkaz:
http://arxiv.org/abs/2405.11224
Publikováno v:
Pacific J. Math. 330 (2024) 123-156
We consider homologically essential simple closed curves on Seifert surfaces of genus one knots in $S^3$, and in particular those that are unknotted or slice in $S^3$. We completely characterize all such curves for most twist knots: they are either p
Externí odkaz:
http://arxiv.org/abs/2307.04313
Autor:
Binns, Fraser, Dey, Subhankar
We apply sutured Floer homology techniques to study the knot and link Floer homologies of various links with annuli embedded in their exteriors. Our main results include, for large $m$, characterizations of links with the same link Floer homology as
Externí odkaz:
http://arxiv.org/abs/2207.08035
Autor:
Binns, Fraser, Dey, Subhankar
Viewing the BRAID invariant as a generator of link Floer homology we generalise work of Baldwin-Vela-Vick to obtain rank bounds on the next to top grading of knot Floer homology. These allow us to classify links with knot Floer homology of rank at mo
Externí odkaz:
http://arxiv.org/abs/2201.03048
Autor:
Dey, Subhankar, Doga, Hakan
In this paper, we give a combinatorial description of the concordance invariant $\varepsilon$ defined by Hom in \cite{hom2011knot}, prove some properties of this invariant using grid homology techniques. We also compute $\varepsilon$ of $(p,q)$ torus
Externí odkaz:
http://arxiv.org/abs/2010.08505
Autor:
Dey, Subhankar
We prove that knot Floer homology of a certain class of knots is non-trivial in next-to-top Alexander grading. This gives a partial affirmative answer to a question posed by Baldwin and Vela-Vick which asks if the same is true for all non-trivial kno
Externí odkaz:
http://arxiv.org/abs/2010.01205
Autor:
Dey, Subhankar
We prove that the $(p,q)$-cable of a non-trivial knot is not Floer homologically thin. Using this and a theorem of Ian Zemke in \cite{zemke}, we find a larger class of satellite knots, containing non-cable knots as well, which are not Floer homologic
Externí odkaz:
http://arxiv.org/abs/1904.11591
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Bararia, Akash, Dey, Subhankar, Gulati, Sumit, Ghatak, Supriyo, Ghosh, Shibajyoti, Banerjee, Sudeep, Sikdar, Nilabja
Publikováno v:
In Hepatobiliary & Pancreatic Diseases International June 2020 19(3):205-217
Autor:
Hashan, Antor Mahamudul, Rahman, Shaon Md Tariqur, Avinash, Kumar, Ul Islam, Rizu Md Rakib, Dey, Subhankar
Publikováno v:
International Journal of Electrical & Computer Engineering (2088-8708); Apr2024, Vol. 14 Issue 2, p1544-1551, 8p