Zobrazeno 1 - 10
of 110
pro vyhledávání: '"Dey, Rukmini"'
This paper establishes an interesting connection between the family of CMC surfaces of revolution in $\mathbb E_1^3$ and some specific families of elliptic curves. As a consequence of this connection, we show in the class of spacelike CMC surfaces of
Externí odkaz:
http://arxiv.org/abs/2405.19742
Autor:
Dey, Rukmini
In this article we define Berezin-type and Odzijewicz-type quantizations on compact smooth manifolds. The method is we embed the smooth manifold of real dimension $n$ into ${\mathbb C}P^n$ and induce the quantizations from there. The standard way by
Externí odkaz:
http://arxiv.org/abs/2405.02838
Autor:
Dey, Rukmini, Ghosh, Kohinoor
In this article we show that a Berezin-type quantization can be achieved on a compact even dimensional manifold $M^{2d}$ by removing a skeleton $M_0$ of lower dimension such that what remains is diffeomorphic to $R^{2d}$ (cell decomposition) which we
Externí odkaz:
http://arxiv.org/abs/2210.08814
Autor:
Dey, Rukmini
We show the existence of a symplectic structure on the moduli space of the Seiberg-Witten equations on $\Sigma \times \Sigma$ where $\Sigma$ is a compact oriented Riemann surface. To prequantize the moduli space, we construct a Quillen-type determina
Externí odkaz:
http://arxiv.org/abs/2203.15997
Autor:
Dey, Rukmini, Ghosh, Kohinoor
Publikováno v:
SIGMA 18 (2022), 028, 14 pages
In this semi-expository paper, we define certain Rawnsley-type coherent and squeezed states on an integral K\"ahler manifold (after possibly removing a set of measure zero) and show that they satisfy some properties which are akin to maximal likeliho
Externí odkaz:
http://arxiv.org/abs/2108.08082
Do co-adjoint orbits of Lie groups support a K\"{a}hler structure? We study this question from a point of view derived from coherent states. We examine three examples of Lie groups: the Weyl-Heisenberg group, $\mathrm{SU(2)}$ and $\mathrm{SU(1,1)}$.
Externí odkaz:
http://arxiv.org/abs/2105.14283
Autor:
Dey, Rukmini, Singh, Rahul Kumar
In this article, we use the inverse function theorem for Banach spaces to interpolate a given real analytic spacelike curve $a$ in Lorentz-Minkowski space $\mathbb{L}^3$ to another real analytic spacelike curve $c$, which is ``close" enough to $a$ in
Externí odkaz:
http://arxiv.org/abs/2102.03019
We show that the height function of Scherk's second surface decomposes into a finite sum of scaled and translated versions of itself, using an Euler Ramanujan identity. A similar result appears in R. Kamien's work on liquid crystals where he shows (u
Externí odkaz:
http://arxiv.org/abs/2010.04405
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Let $a: I\to \mathbb{R}^3 $ be a real analytic curve satisfying some conditions. In this article, we show that for any real analytic curve $l:I\to \mathbb R^3$ close to $a$ (in a sense which is precisely defined in the paper) there exists a translati
Externí odkaz:
http://arxiv.org/abs/1907.10780