Zobrazeno 1 - 10
of 43
pro vyhledávání: '"Devriendt, Jo"'
Over the past decades, Answer Set Programming (ASP) has emerged as an important paradigm for declarative problem solving. Technological progress in this area has been stimulated by the use of common standards, such as the ASP-Core-2 language. While A
Externí odkaz:
http://arxiv.org/abs/2108.04020
This document provides a brief introduction to learned automated planning problem where the state transition function is in the form of a binarized neural network (BNN), presents a general MaxSAT encoding for this problem, and describes the four doma
Externí odkaz:
http://arxiv.org/abs/2108.00633
The IDP knowledge base system currently uses MiniSAT(ID) as its backend Constraint Programming (CP) solver. A few similar systems have used a Mixed Integer Programming (MIP) solver as backend. However, so far little is known about when the MIP solver
Externí odkaz:
http://arxiv.org/abs/1609.00759
Autor:
Devriendt, Jo, Bogaerts, Bart
Symmetry breaking has been proven to be an efficient preprocessing technique for satisfiability solving (SAT). In this paper, we port the state-of-the-art SAT symmetry breaker BreakID to answer set programming (ASP). The result is a lightweight tool
Externí odkaz:
http://arxiv.org/abs/1608.08447
PC(ID) extends propositional logic with inductive definitions: rule sets under the well-founded semantics. Recently, a notion of relevance was introduced for this language. This notion determines the set of undecided literals that can still influence
Externí odkaz:
http://arxiv.org/abs/1608.05609
Symmetry in combinatorial problems is an extensively studied topic. We continue this research in the context of model expansion problems, with the aim of automating the workflow of detecting and breaking symmetry. We focus on local domain symmetry, w
Externí odkaz:
http://arxiv.org/abs/1608.02688
Debugging unsatisfiable constraint models can be a tedious task. Current tools allow a user to extract a subset of constraints that render the problem unsatisfiable (MUS). However, in some cases, this MUS can be very large or too difficult to underst
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______1131::9f9dedec822b8c6c5906ea58717d64dd
https://lirias.kuleuven.be/handle/20.500.12942/722435
https://lirias.kuleuven.be/handle/20.500.12942/722435
Publikováno v:
Liew, V, Beame, P, Devriendt, J, Elffers, J & Nordström, J 2020, Verifying Properties of Bit-vector Multiplication Using Cutting Planes Reasoning . in Proceedings of the 20th Conference on Formal Methods in Computer-Aided Design (FMCAD '20) ., 9283622, IEEE, pp. 194-204, 20th International Conference on Formal Methods in Computer-Aided Design-FMCAD 2020;, Virtual, 21/09/2020 . https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_27
Systems mixing Boolean logic and arithmetic have been a long-standing challenge for verification tools such as SAT-based bit-vector solvers. Though SAT solvers can be highly efficient for Boolean reasoning, they scale poorly once multiplication is in
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______2751::530ade98461ededd5792959acc6fb2a8
https://curis.ku.dk/portal/da/publications/verifying-properties-of-bitvector-multiplication-using-cutting-planes-reasoning(d08d12c1-8aad-4d9e-9cc1-52679e7c5673).html
https://curis.ku.dk/portal/da/publications/verifying-properties-of-bitvector-multiplication-using-cutting-planes-reasoning(d08d12c1-8aad-4d9e-9cc1-52679e7c5673).html
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Devriendt, Jo
Many combinatorial problems exhibit symmetry, a transformational property that does not fundamentally alter the nature of a problem. For instance, renaming a set of identical trucks in a routing problem, mirroring or rotating a chessboard onto itself
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______1131::ca17baebc28709f41f823c006bb5eeff
https://lirias.kuleuven.be/handle/123456789/564687
https://lirias.kuleuven.be/handle/123456789/564687