Zobrazeno 1 - 10
of 84
pro vyhledávání: '"Deville Robert"'
Autor:
Deville Robert
Publikováno v:
Moroccan Journal of Pure and Applied Analysis, Vol 9, Iss 2, Pp 204-208 (2023)
There exist two real valued periodic functions on the real line such that, for every x ∈ ℝ, f1(x) + f2(x) = x, but it is impossible to find two real valued periodic functions on the real line such that, for every x ∈ ℝ, f1(x) + f2(x) = x2. Th
Externí odkaz:
https://doaj.org/article/b433fcc7136546aca834a90412b55f3c
We construct a differentiable locally Lipschitz function $f$ in $\mathbb{R}^{N}$ with the property that for every convex body $K\subset \mathbb{R}^N$ there exists $\bar x \in \mathbb{R}^N$ such that $K$ coincides with the set $\partial_L f(\bar x)$ o
Externí odkaz:
http://arxiv.org/abs/2405.09206
Autor:
Deville, Robert, Jimenez-Sevilla, Mar
In this note, we provide a starlike and normal tiling in any separable Banach space. That means, there are positive constants r and R (not depending on the separable Banach space) such that every tile of this tiling is starlike, contains a ball of ra
Externí odkaz:
http://arxiv.org/abs/2008.10367
Autor:
Deville, Robert, García-Bravo, Miguel
We show some new results about tilings in Banach spaces. A tiling of a Banach space $X$ is a covering by closed sets with non-empty interior so that they have pairwise disjoint interiors. If moreover the tiles have inner radii uniformly bounded from
Externí odkaz:
http://arxiv.org/abs/2001.04372
Autor:
Deville, Robert, Mudarra, Carlos
Given an open subset $\Omega$ of a Banach space and a Lipschitz function $u_0: \overline{\Omega} \to \mathbb{R},$ we study whether it is possible to approximate $u_0$ uniformly on $\Omega$ by $C^k$-smooth Lipschitz functions which coincide with $u_0$
Externí odkaz:
http://arxiv.org/abs/1810.04205
Self-contractedness (or self-expandedness, depending on the orientation) is hereby extended in two natural ways giving rise, for any $\lambda\in\lbrack-1,1)$, to the metric notion of $\lambda $-curve and the (weaker) geometric notion of $\lambda$-con
Externí odkaz:
http://arxiv.org/abs/1802.09637
Autor:
Baudier, Florent P., Deville, Robert
Let $M$ be a separable metric space. We say that $f=(f_n):M\to c_0$ is a good-$\lambda$-embedding if, whenever $x,y\in M$, $x\ne y$ implies $d(x,y)\le\Vert f(x)-f(y)\Vert$ and, for each $n$, $Lip(f_n)<\lambda$, where $Lip(f_n)$ denotes the Lipschitz
Externí odkaz:
http://arxiv.org/abs/1612.02025
Autor:
Deville, Robert, Madiedo, Óscar
It is well known that every bounded below and non increasing sequence in the real line converges. We give a version of this result valid in Banach spaces with the Radon-Nikodym property, thus extending a former result of A. Proch\'azka.
Comment:
Comment:
Externí odkaz:
http://arxiv.org/abs/1303.1721
Publikováno v:
In Journal of Mathematical Analysis and Applications 15 January 2018 457(2):1333-1352
Autor:
Deville, Robert, Revalski, Julian P.
Publikováno v:
Proceedings of the American Mathematical Society, 2000 Apr 01. 128(4), 1117-1124.
Externí odkaz:
https://www.jstor.org/stable/119787