Zobrazeno 1 - 10
of 54
pro vyhledávání: '"Devi, P. Durga"'
Autor:
Devi, P. Durga, Mamatha, G.
Publikováno v:
In Measurement: Sensors June 2024 33
We perform a detailed classification of the Lie point symmetries and of the resulting similarity transformations for the Generalized Boiti-Leon-Pempinelli equations. The latter equations for a system of two nonlinear 1+2 partial differential equation
Externí odkaz:
http://arxiv.org/abs/2008.04228
The theory of Lie point symmetries is applied to study the generalized Zakharov system with two unknown parameters. The system reduces into a three-dimensional real value functions system, where we find that admits five Lie point symmetries. From the
Externí odkaz:
http://arxiv.org/abs/2006.11813
In this article, we study the Lie point symmetries for the time fractional generalized Burgers-Fisher (GBF) equation. While getting an appropriate combination of symmetries, the time fractional partial differential equation has been transformed to no
Externí odkaz:
http://arxiv.org/abs/2003.05294
In this article, we study the generalised Kudryashov method for the time fractional generalized Burgers-Fisher equation (GBF). Using traveling wave transformation, the time fractional GBF is transformed to nonlinear ordinary differential equation (OD
Externí odkaz:
http://arxiv.org/abs/2003.05295
We study the symmetry and integrability of a Generalized Modified Camassa-Holm Equation (GMCH) of the form $$u_{t}-u_{xxt}+2nu_{x}(u^2-u_{x}^2)^{n-1}(u-u_{xx})^2+(u^2-u_{x}^2)^{n}(u_{x}-u_{xxx})=0.$$ We observe that for increasing values of $n\in \ma
Externí odkaz:
http://arxiv.org/abs/1912.10624
We examine the general element of the class of ordinary differential equations, $yy^{(n+1)}+\alpha y'y^{(n)}=0$, for its Lie point symmetries. We observe that the algebraic properties of this class of equations display an attractive set of patterns,
Externí odkaz:
http://arxiv.org/abs/1911.05724
We study the symmetry and integrability of a modified Camassa-Holm Equation (MCH), with an arbitrary parameter $k,$ of the form $$u_{t}+k(u-u_{xx})^2u_{x}-u_{xxt}+(u^{2}-{u_{x}}^2)(u_{x}-u_{xxx})=0.$$ By using Lie point symmetries we reduce the order
Externí odkaz:
http://arxiv.org/abs/1911.05713
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Applied Mathematics and Computation, 331 (2018) 457-472
We consider the nonlinear Helmholtz (NLH) equation describing the beam propagation in a planar waveguide with Kerr-like nonlinearity under non-paraxial approximation. By applying the Lie symmetry analysis, we determine the Lie point symmetries and th
Externí odkaz:
http://arxiv.org/abs/1803.01622