Zobrazeno 1 - 10
of 33
pro vyhledávání: '"Derek K. Thomas"'
Autor:
Young Jae Sim, Derek K. Thomas
Publikováno v:
Mathematics, Vol 8, Iss 9, p 1521 (2020)
Let f be analytic in the unit disk D={z∈C:|z|<1}, and S be the subclass of normalized univalent functions given by f(z)=z+∑n=2∞anzn for z∈D. Let S*⊂S be the subset of starlike functions in D and C⊂S the subset of convex functions in D. We
Externí odkaz:
https://doaj.org/article/1ade1567418044cbbd6e95d138f7295e
Autor:
Sa’adatul Fitri, Derek K. Thomas
Publikováno v:
Mathematics, Vol 8, Iss 2, p 175 (2020)
For γ ≥ 0 and α ≥ 0 , we introduce the class B 1 γ ( α ) of Gamma−Bazilevič functions defined for z ∈ D by R e z f ′ ( z ) f ( z ) 1 − α z α + z f ″ ( z ) f ′ ( z ) + ( α − 1 ) z f ′ ( z ) f ( z ) − 1 γ z f ′ ( z ) f
Externí odkaz:
https://doaj.org/article/8e2b06c57d844331adf1d0d9bda8e562
The study of univalent functions dates back to the early years of the 20th century, and is one of the most popular research areas in complex analysis. This book is directed at introducing and bringing up to date current research in the area of unival
Publikováno v:
Bulletin of the Australian Mathematical Society. :1-7
The sharp bound for the third Hankel determinant for the coefficients of the inverse function of convex functions is obtained, thus answering a recent conjecture concerning invariance of coefficient functionals for convex functions.
Publikováno v:
Journal of Mathematical Inequalities. :191-204
Autor:
Young Jae Sim, Derek K. Thomas
Publikováno v:
The Journal of Analysis. 30:875-893
Let f be analytic in the unit disk $${\mathbb {D}}=\{z\in {\mathbb {C}}:|z| D = { z ∈ C : | z | < 1 } , and $${\mathcal {S}}$$ S be the subclass of normalised univalent functions given by $$f(z)=z+\sum _{n=2}^{\infty }a_n z^n$$ f ( z ) = z + ∑ n
Publikováno v:
Forum Mathematicum. 34:137-156
This paper is concerned with Hankel determinants for starlike and convex functions related to modified sigmoid functions. Sharp bounds are given for second and third Hankel determinants.
Autor:
Young Jae Sim, Derek K. Thomas
Publikováno v:
Bulletin of the Australian Mathematical Society. 105:117-123
Let f be analytic in the unit disk $\mathbb {D}=\{z\in \mathbb {C}:|z| and let ${\mathcal S}$ be the subclass of normalised univalent functions with $f(0)=0$ and $f'(0)=1$ , given by $f(z)=z+\sum _{n=2}^{\infty }a_n z^n$ . Let F be the inverse functi
Publikováno v:
Annali di Matematica Pura ed Applicata (1923 -). 200:2515-2533
Let f be analytic in the unit disk $${\mathbb {D}}=\{z\in {\mathbb {C}}:|z| D = { z ∈ C : | z | < 1 } , and $${{\mathcal {S}}}$$ S be the subclass of normalized univalent functions given by $$f(z)=z+\sum _{n=2}^{\infty }a_n z^n$$ f ( z ) = z + ∑
Autor:
Derek K. Thomas, Young Jae Sim
Publikováno v:
Bulletin of the Australian Mathematical Society. 103:124-131
Let $f$ be analytic in the unit disk $\mathbb{D}=\{z\in \mathbb{C}:|z| and ${\mathcal{S}}$ be the subclass of normalised univalent functions given by $f(z)=z+\sum _{n=2}^{\infty }a_{n}z^{n}$ for $z\in \mathbb{D}$. We give sharp upper and lower bounds