Zobrazeno 1 - 10
of 1 627
pro vyhledávání: '"Depeursinge, A."'
Autor:
Spagnolo, Federico, Molchanova, Nataliia, Pineda, Mario Ocampo, Melie-Garcia, Lester, Cuadra, Meritxell Bach, Granziera, Cristina, Andrearczyk, Vincent, Depeursinge, Adrien
To date, several methods have been developed to explain deep learning algorithms for classification tasks. Recently, an adaptation of two of such methods has been proposed to generate instance-level explainable maps in a semantic segmentation scenari
Externí odkaz:
http://arxiv.org/abs/2409.03772
Autor:
Molchanova, Nataliia, Cagol, Alessandro, Gordaliza, Pedro M., Ocampo-Pineda, Mario, Lu, Po-Jui, Weigel, Matthias, Chen, Xinjie, Depeursinge, Adrien, Granziera, Cristina, Müller, Henning, Cuadra, Meritxell Bach
Uncertainty quantification (UQ) has become critical for evaluating the reliability of artificial intelligence systems, especially in medical image segmentation. This study addresses the interpretability of instance-wise uncertainty values in deep lea
Externí odkaz:
http://arxiv.org/abs/2407.05761
Autor:
Spagnolo, Federico, Molchanova, Nataliia, Schaer, Roger, Cuadra, Meritxell Bach, Pineda, Mario Ocampo, Melie-Garcia, Lester, Granziera, Cristina, Andrearczyk, Vincent, Depeursinge, Adrien
In recent years, explainable methods for artificial intelligence (XAI) have tried to reveal and describe models' decision mechanisms in the case of classification tasks. However, XAI for semantic segmentation and in particular for single instances ha
Externí odkaz:
http://arxiv.org/abs/2406.09335
Autor:
Abutalip, Kudaibergen, Saeed, Numan, Sobirov, Ikboljon, Andrearczyk, Vincent, Depeursinge, Adrien, Yaqub, Mohammad
Deploying deep learning (DL) models in medical applications relies on predictive performance and other critical factors, such as conveying trustworthy predictive uncertainty. Uncertainty estimation (UE) methods provide potential solutions for evaluat
Externí odkaz:
http://arxiv.org/abs/2403.16594
Autor:
Molchanova, Nataliia, Raina, Vatsal, Malinin, Andrey, La Rosa, Francesco, Depeursinge, Adrien, Gales, Mark, Granziera, Cristina, Muller, Henning, Graziani, Mara, Cuadra, Meritxell Bach
Publikováno v:
Computers in Biology and Medicine 184(2025)109336
This paper explores uncertainty quantification (UQ) as an indicator of the trustworthiness of automated deep-learning (DL) tools in the context of white matter lesion (WML) segmentation from magnetic resonance imaging (MRI) scans of multiple sclerosi
Externí odkaz:
http://arxiv.org/abs/2311.08931
Autor:
Li, Jianning, Zhou, Zongwei, Yang, Jiancheng, Pepe, Antonio, Gsaxner, Christina, Luijten, Gijs, Qu, Chongyu, Zhang, Tiezheng, Chen, Xiaoxi, Li, Wenxuan, Wodzinski, Marek, Friedrich, Paul, Xie, Kangxian, Jin, Yuan, Ambigapathy, Narmada, Nasca, Enrico, Solak, Naida, Melito, Gian Marco, Vu, Viet Duc, Memon, Afaque R., Schlachta, Christopher, De Ribaupierre, Sandrine, Patel, Rajnikant, Eagleson, Roy, Chen, Xiaojun, Mächler, Heinrich, Kirschke, Jan Stefan, de la Rosa, Ezequiel, Christ, Patrick Ferdinand, Li, Hongwei Bran, Ellis, David G., Aizenberg, Michele R., Gatidis, Sergios, Küstner, Thomas, Shusharina, Nadya, Heller, Nicholas, Andrearczyk, Vincent, Depeursinge, Adrien, Hatt, Mathieu, Sekuboyina, Anjany, Löffler, Maximilian, Liebl, Hans, Dorent, Reuben, Vercauteren, Tom, Shapey, Jonathan, Kujawa, Aaron, Cornelissen, Stefan, Langenhuizen, Patrick, Ben-Hamadou, Achraf, Rekik, Ahmed, Pujades, Sergi, Boyer, Edmond, Bolelli, Federico, Grana, Costantino, Lumetti, Luca, Salehi, Hamidreza, Ma, Jun, Zhang, Yao, Gharleghi, Ramtin, Beier, Susann, Sowmya, Arcot, Garza-Villarreal, Eduardo A., Balducci, Thania, Angeles-Valdez, Diego, Souza, Roberto, Rittner, Leticia, Frayne, Richard, Ji, Yuanfeng, Ferrari, Vincenzo, Chatterjee, Soumick, Dubost, Florian, Schreiber, Stefanie, Mattern, Hendrik, Speck, Oliver, Haehn, Daniel, John, Christoph, Nürnberger, Andreas, Pedrosa, João, Ferreira, Carlos, Aresta, Guilherme, Cunha, António, Campilho, Aurélio, Suter, Yannick, Garcia, Jose, Lalande, Alain, Vandenbossche, Vicky, Van Oevelen, Aline, Duquesne, Kate, Mekhzoum, Hamza, Vandemeulebroucke, Jef, Audenaert, Emmanuel, Krebs, Claudia, van Leeuwen, Timo, Vereecke, Evie, Heidemeyer, Hauke, Röhrig, Rainer, Hölzle, Frank, Badeli, Vahid, Krieger, Kathrin, Gunzer, Matthias, Chen, Jianxu, van Meegdenburg, Timo, Dada, Amin, Balzer, Miriam, Fragemann, Jana, Jonske, Frederic, Rempe, Moritz, Malorodov, Stanislav, Bahnsen, Fin H., Seibold, Constantin, Jaus, Alexander, Marinov, Zdravko, Jaeger, Paul F., Stiefelhagen, Rainer, Santos, Ana Sofia, Lindo, Mariana, Ferreira, André, Alves, Victor, Kamp, Michael, Abourayya, Amr, Nensa, Felix, Hörst, Fabian, Brehmer, Alexander, Heine, Lukas, Hanusrichter, Yannik, Weßling, Martin, Dudda, Marcel, Podleska, Lars E., Fink, Matthias A., Keyl, Julius, Tserpes, Konstantinos, Kim, Moon-Sung, Elhabian, Shireen, Lamecker, Hans, Zukić, Dženan, Paniagua, Beatriz, Wachinger, Christian, Urschler, Martin, Duong, Luc, Wasserthal, Jakob, Hoyer, Peter F., Basu, Oliver, Maal, Thomas, Witjes, Max J. H., Schiele, Gregor, Chang, Ti-chiun, Ahmadi, Seyed-Ahmad, Luo, Ping, Menze, Bjoern, Reyes, Mauricio, Deserno, Thomas M., Davatzikos, Christos, Puladi, Behrus, Fua, Pascal, Yuille, Alan L., Kleesiek, Jens, Egger, Jan
Prior to the deep learning era, shape was commonly used to describe the objects. Nowadays, state-of-the-art (SOTA) algorithms in medical imaging are predominantly diverging from computer vision, where voxel grids, meshes, point clouds, and implicit s
Externí odkaz:
http://arxiv.org/abs/2308.16139
Autor:
Eisenmann, Matthias, Reinke, Annika, Weru, Vivienn, Tizabi, Minu Dietlinde, Isensee, Fabian, Adler, Tim J., Ali, Sharib, Andrearczyk, Vincent, Aubreville, Marc, Baid, Ujjwal, Bakas, Spyridon, Balu, Niranjan, Bano, Sophia, Bernal, Jorge, Bodenstedt, Sebastian, Casella, Alessandro, Cheplygina, Veronika, Daum, Marie, de Bruijne, Marleen, Depeursinge, Adrien, Dorent, Reuben, Egger, Jan, Ellis, David G., Engelhardt, Sandy, Ganz, Melanie, Ghatwary, Noha, Girard, Gabriel, Godau, Patrick, Gupta, Anubha, Hansen, Lasse, Harada, Kanako, Heinrich, Mattias, Heller, Nicholas, Hering, Alessa, Huaulmé, Arnaud, Jannin, Pierre, Kavur, Ali Emre, Kodym, Oldřich, Kozubek, Michal, Li, Jianning, Li, Hongwei, Ma, Jun, Martín-Isla, Carlos, Menze, Bjoern, Noble, Alison, Oreiller, Valentin, Padoy, Nicolas, Pati, Sarthak, Payette, Kelly, Rädsch, Tim, Rafael-Patiño, Jonathan, Bawa, Vivek Singh, Speidel, Stefanie, Sudre, Carole H., van Wijnen, Kimberlin, Wagner, Martin, Wei, Donglai, Yamlahi, Amine, Yap, Moi Hoon, Yuan, Chun, Zenk, Maximilian, Zia, Aneeq, Zimmerer, David, Aydogan, Dogu Baran, Bhattarai, Binod, Bloch, Louise, Brüngel, Raphael, Cho, Jihoon, Choi, Chanyeol, Dou, Qi, Ezhov, Ivan, Friedrich, Christoph M., Fuller, Clifton, Gaire, Rebati Raman, Galdran, Adrian, Faura, Álvaro García, Grammatikopoulou, Maria, Hong, SeulGi, Jahanifar, Mostafa, Jang, Ikbeom, Kadkhodamohammadi, Abdolrahim, Kang, Inha, Kofler, Florian, Kondo, Satoshi, Kuijf, Hugo, Li, Mingxing, Luu, Minh Huan, Martinčič, Tomaž, Morais, Pedro, Naser, Mohamed A., Oliveira, Bruno, Owen, David, Pang, Subeen, Park, Jinah, Park, Sung-Hong, Płotka, Szymon, Puybareau, Elodie, Rajpoot, Nasir, Ryu, Kanghyun, Saeed, Numan, Shephard, Adam, Shi, Pengcheng, Štepec, Dejan, Subedi, Ronast, Tochon, Guillaume, Torres, Helena R., Urien, Helene, Vilaça, João L., Wahid, Kareem Abdul, Wang, Haojie, Wang, Jiacheng, Wang, Liansheng, Wang, Xiyue, Wiestler, Benedikt, Wodzinski, Marek, Xia, Fangfang, Xie, Juanying, Xiong, Zhiwei, Yang, Sen, Yang, Yanwu, Zhao, Zixuan, Maier-Hein, Klaus, Jäger, Paul F., Kopp-Schneider, Annette, Maier-Hein, Lena
International benchmarking competitions have become fundamental for the comparative performance assessment of image analysis methods. However, little attention has been given to investigating what can be learnt from these competitions. Do they really
Externí odkaz:
http://arxiv.org/abs/2303.17719
Autor:
Eisenmann, Matthias, Reinke, Annika, Weru, Vivienn, Tizabi, Minu Dietlinde, Isensee, Fabian, Adler, Tim J., Godau, Patrick, Cheplygina, Veronika, Kozubek, Michal, Ali, Sharib, Gupta, Anubha, Kybic, Jan, Noble, Alison, de Solórzano, Carlos Ortiz, Pachade, Samiksha, Petitjean, Caroline, Sage, Daniel, Wei, Donglai, Wilden, Elizabeth, Alapatt, Deepak, Andrearczyk, Vincent, Baid, Ujjwal, Bakas, Spyridon, Balu, Niranjan, Bano, Sophia, Bawa, Vivek Singh, Bernal, Jorge, Bodenstedt, Sebastian, Casella, Alessandro, Choi, Jinwook, Commowick, Olivier, Daum, Marie, Depeursinge, Adrien, Dorent, Reuben, Egger, Jan, Eichhorn, Hannah, Engelhardt, Sandy, Ganz, Melanie, Girard, Gabriel, Hansen, Lasse, Heinrich, Mattias, Heller, Nicholas, Hering, Alessa, Huaulmé, Arnaud, Kim, Hyunjeong, Landman, Bennett, Li, Hongwei Bran, Li, Jianning, Ma, Jun, Martel, Anne, Martín-Isla, Carlos, Menze, Bjoern, Nwoye, Chinedu Innocent, Oreiller, Valentin, Padoy, Nicolas, Pati, Sarthak, Payette, Kelly, Sudre, Carole, van Wijnen, Kimberlin, Vardazaryan, Armine, Vercauteren, Tom, Wagner, Martin, Wang, Chuanbo, Yap, Moi Hoon, Yu, Zeyun, Yuan, Chun, Zenk, Maximilian, Zia, Aneeq, Zimmerer, David, Bao, Rina, Choi, Chanyeol, Cohen, Andrew, Dzyubachyk, Oleh, Galdran, Adrian, Gan, Tianyuan, Guo, Tianqi, Gupta, Pradyumna, Haithami, Mahmood, Ho, Edward, Jang, Ikbeom, Li, Zhili, Luo, Zhengbo, Lux, Filip, Makrogiannis, Sokratis, Müller, Dominik, Oh, Young-tack, Pang, Subeen, Pape, Constantin, Polat, Gorkem, Reed, Charlotte Rosalie, Ryu, Kanghyun, Scherr, Tim, Thambawita, Vajira, Wang, Haoyu, Wang, Xinliang, Xu, Kele, Yeh, Hung, Yeo, Doyeob, Yuan, Yixuan, Zeng, Yan, Zhao, Xin, Abbing, Julian, Adam, Jannes, Adluru, Nagesh, Agethen, Niklas, Ahmed, Salman, Khalil, Yasmina Al, Alenyà, Mireia, Alhoniemi, Esa, An, Chengyang, Anwar, Talha, Arega, Tewodros Weldebirhan, Avisdris, Netanell, Aydogan, Dogu Baran, Bai, Yingbin, Calisto, Maria Baldeon, Basaran, Berke Doga, Beetz, Marcel, Bian, Cheng, Bian, Hao, Blansit, Kevin, Bloch, Louise, Bohnsack, Robert, Bosticardo, Sara, Breen, Jack, Brudfors, Mikael, Brüngel, Raphael, Cabezas, Mariano, Cacciola, Alberto, Chen, Zhiwei, Chen, Yucong, Chen, Daniel Tianming, Cho, Minjeong, Choi, Min-Kook, Xie, Chuantao Xie Chuantao, Cobzas, Dana, Cohen-Adad, Julien, Acero, Jorge Corral, Das, Sujit Kumar, de Oliveira, Marcela, Deng, Hanqiu, Dong, Guiming, Doorenbos, Lars, Efird, Cory, Escalera, Sergio, Fan, Di, Serj, Mehdi Fatan, Fenneteau, Alexandre, Fidon, Lucas, Filipiak, Patryk, Finzel, René, Freitas, Nuno R., Friedrich, Christoph M., Fulton, Mitchell, Gaida, Finn, Galati, Francesco, Galazis, Christoforos, Gan, Chang Hee, Gao, Zheyao, Gao, Shengbo, Gazda, Matej, Gerats, Beerend, Getty, Neil, Gibicar, Adam, Gifford, Ryan, Gohil, Sajan, Grammatikopoulou, Maria, Grzech, Daniel, Güley, Orhun, Günnemann, Timo, Guo, Chunxu, Guy, Sylvain, Ha, Heonjin, Han, Luyi, Han, Il Song, Hatamizadeh, Ali, He, Tian, Heo, Jimin, Hitziger, Sebastian, Hong, SeulGi, Hong, SeungBum, Huang, Rian, Huang, Ziyan, Huellebrand, Markus, Huschauer, Stephan, Hussain, Mustaffa, Inubushi, Tomoo, Polat, Ece Isik, Jafaritadi, Mojtaba, Jeong, SeongHun, Jian, Bailiang, Jiang, Yuanhong, Jiang, Zhifan, Jin, Yueming, Joshi, Smriti, Kadkhodamohammadi, Abdolrahim, Kamraoui, Reda Abdellah, Kang, Inha, Kang, Junghwa, Karimi, Davood, Khademi, April, Khan, Muhammad Irfan, Khan, Suleiman A., Khantwal, Rishab, Kim, Kwang-Ju, Kline, Timothy, Kondo, Satoshi, Kontio, Elina, Krenzer, Adrian, Kroviakov, Artem, Kuijf, Hugo, Kumar, Satyadwyoom, La Rosa, Francesco, Lad, Abhi, Lee, Doohee, Lee, Minho, Lena, Chiara, Li, Hao, Li, Ling, Li, Xingyu, Liao, Fuyuan, Liao, KuanLun, Oliveira, Arlindo Limede, Lin, Chaonan, Lin, Shan, Linardos, Akis, Linguraru, Marius George, Liu, Han, Liu, Tao, Liu, Di, Liu, Yanling, Lourenço-Silva, João, Lu, Jingpei, Lu, Jiangshan, Luengo, Imanol, Lund, Christina B., Luu, Huan Minh, Lv, Yi, Macar, Uzay, Maechler, Leon, L., Sina Mansour, Marshall, Kenji, Mazher, Moona, McKinley, Richard, Medela, Alfonso, Meissen, Felix, Meng, Mingyuan, Miller, Dylan, Mirjahanmardi, Seyed Hossein, Mishra, Arnab, Mitha, Samir, Mohy-ud-Din, Hassan, Mok, Tony Chi Wing, Murugesan, Gowtham Krishnan, Karthik, Enamundram Naga, Nalawade, Sahil, Nalepa, Jakub, Naser, Mohamed, Nateghi, Ramin, Naveed, Hammad, Nguyen, Quang-Minh, Quoc, Cuong Nguyen, Nichyporuk, Brennan, Oliveira, Bruno, Owen, David, Pal, Jimut Bahan, Pan, Junwen, Pan, Wentao, Pang, Winnie, Park, Bogyu, Pawar, Vivek, Pawar, Kamlesh, Peven, Michael, Philipp, Lena, Pieciak, Tomasz, Plotka, Szymon, Plutat, Marcel, Pourakpour, Fattaneh, Preložnik, Domen, Punithakumar, Kumaradevan, Qayyum, Abdul, Queirós, Sandro, Rahmim, Arman, Razavi, Salar, Ren, Jintao, Rezaei, Mina, Rico, Jonathan Adam, Rieu, ZunHyan, Rink, Markus, Roth, Johannes, Ruiz-Gonzalez, Yusely, Saeed, Numan, Saha, Anindo, Salem, Mostafa, Sanchez-Matilla, Ricardo, Schilling, Kurt, Shao, Wei, Shen, Zhiqiang, Shi, Ruize, Shi, Pengcheng, Sobotka, Daniel, Soulier, Théodore, Fadida, Bella Specktor, Stoyanov, Danail, Mun, Timothy Sum Hon, Sun, Xiaowu, Tao, Rong, Thaler, Franz, Théberge, Antoine, Thielke, Felix, Torres, Helena, Wahid, Kareem A., Wang, Jiacheng, Wang, YiFei, Wang, Wei, Wang, Xiong, Wen, Jianhui, Wen, Ning, Wodzinski, Marek, Wu, Ye, Xia, Fangfang, Xiang, Tianqi, Xiaofei, Chen, Xu, Lizhan, Xue, Tingting, Yang, Yuxuan, Yang, Lin, Yao, Kai, Yao, Huifeng, Yazdani, Amirsaeed, Yip, Michael, Yoo, Hwanseung, Yousefirizi, Fereshteh, Yu, Shunkai, Yu, Lei, Zamora, Jonathan, Zeineldin, Ramy Ashraf, Zeng, Dewen, Zhang, Jianpeng, Zhang, Bokai, Zhang, Jiapeng, Zhang, Fan, Zhang, Huahong, Zhao, Zhongchen, Zhao, Zixuan, Zhao, Jiachen, Zhao, Can, Zheng, Qingshuo, Zhi, Yuheng, Zhou, Ziqi, Zou, Baosheng, Maier-Hein, Klaus, Jäger, Paul F., Kopp-Schneider, Annette, Maier-Hein, Lena
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in
Externí odkaz:
http://arxiv.org/abs/2212.08568
Autor:
Flouris, Kyriakos, Jimenez-del-Toro, Oscar, Aberle, Christoph, Bach, Michael, Schaer, Roger, Obmann, Markus, Stieltjes, Bram, Mueller, Henning, Depeursinge, Adrien, Konukoglu, Ender
Publikováno v:
Scientific Reports volume 12, Article number: 4732 (2022)
Medical imaging quantitative features had once disputable usefulness in clinical studies. Nowadays, advancements in analysis techniques, for instance through machine learning, have enabled quantitative features to be progressively useful in diagnosis
Externí odkaz:
http://arxiv.org/abs/2210.02759
Autor:
Sacha Bors, Daniel Abler, Matthieu Dietz, Vincent Andrearczyk, Julien Fageot, Marie Nicod-Lalonde, Niklaus Schaefer, Robert DeKemp, Christel H. Kamani, John O. Prior, Adrien Depeursinge
Publikováno v:
Scientific Reports, Vol 14, Iss 1, Pp 1-13 (2024)
Abstract Assessing the individual risk of Major Adverse Cardiac Events (MACE) is of major importance as cardiovascular diseases remain the leading cause of death worldwide. Quantitative Myocardial Perfusion Imaging (MPI) parameters such as stress Myo
Externí odkaz:
https://doaj.org/article/04d8552567144e6b9f4b562be9a2f82f