Zobrazeno 1 - 10
of 25
pro vyhledávání: '"Depauw, Jérôme"'
Autor:
Depauw, Jérôme
In this work we prove the pointwise ergodic theorem for harmonic degree 1 cocycle of a measurable stationary action of Z^d on a probability space. In a precedent paper Boivin and Derriennic (1991) studied this theorem for not necessarily harmonic coc
Externí odkaz:
http://arxiv.org/abs/1309.1566
Autor:
Depauw, Jérôme, Derrien, Jean-Marc
The Central Limit Theorem for the random walk on a stationary random network of conductances has been studied by several authors. In one dimension, when conductances and resistances are integrable, and following a method of martingale introduced by S
Externí odkaz:
http://arxiv.org/abs/0902.0584
Autor:
Lam, Hoang-Chuong a, b, ⁎, Depauw, Jerome c
Publikováno v:
In Stochastic Processes and their Applications April 2016 126(4):983-996
Autor:
Depauw, Jérôme a, Derrien, Jean-Marc b
Publikováno v:
In Comptes rendus - Mathématique 2009 347(7):401-406
Autor:
Depauw, Jérôme
Publikováno v:
In Comptes rendus - Mathématique 2006 342(5):337-340
Autor:
Depauw, Jérôme1 jerome.depauw@univ-tours.fr
Publikováno v:
Communications in Mathematical Physics. Aug2007, Vol. 274 Issue 2, p381-397. 17p.
Autor:
Depauw, Jérôme1 jerome.depauw@univ-tours.fr
Publikováno v:
Probability Theory & Related Fields. Jul2006, Vol. 135 Issue 3, p457-469. 13p. 2 Diagrams.
Autor:
Depauw, Jérôme
Publikováno v:
In Annales de l'Institut Henri Poincare / Probabilites et statistiques 1999 35(3):355-370
Autor:
Depauw, Jérôme
Publikováno v:
Ergodic Theory and Dynamical Systems
Ergodic Theory and Dynamical Systems, Cambridge University Press (CUP), 2002, 22, pp.153-169. ⟨10.1017/S0143385702000068⟩
Ergodic Theory and Dynamical Systems, Cambridge University Press (CUP), 2002, 22, pp.153-169. ⟨10.1017/S0143385702000068⟩
International audience; Let (\Omega,{\cal B},m) be a probability space. To any stationary action T of \mathbb{Z}^d is associated a notion of algebraic cocycle of degree \geq 1, the degree 1 corresponding to the usual sense. This notion was studied by
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::1707f4804b236bfec77907212dd554b5
https://hal.archives-ouvertes.fr/hal-00336593
https://hal.archives-ouvertes.fr/hal-00336593
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.