Zobrazeno 1 - 10
of 39
pro vyhledávání: '"Deo, Shaunak V."'
Autor:
Deo, Shaunak V., Medvedovsky, Anna
We use deformation theory to study the big Hecke algebra acting on mod-2 modular forms of prime level $N$ and all weights, especially its local component at the trivial representation. For $N = 3, 5$, we prove that the maximal reduced quotient of thi
Externí odkaz:
http://arxiv.org/abs/2208.00429
Autor:
Deo, Shaunak V.
Let $p \geq 5$ be a prime, $N$ be an integer not divisible by $p$, $\bar\rho_0$ be a reducible, odd and semi-simple representation of $G_{\mathbb{Q},Np}$ of dimension $2$ and $\{\ell_1,\cdots,\ell_r\}$ be a set of primes not dividing $Np$. After assu
Externí odkaz:
http://arxiv.org/abs/2206.06209
Publikováno v:
Pure & Applied Math. Quarterly (2023) vol.19, no.2, pp. 641-680
We study the Iwasawa theory of the fine Selmer group associated to certain Galois representations. The vanishing of the $\mu$-invariant is shown to follow in some cases from a natural property satisfied by Galois deformation rings. We outline conditi
Externí odkaz:
http://arxiv.org/abs/2202.09937
Autor:
Deo, Shaunak V.
Let $p$ and $\ell$ be primes such that $p > 3$ and $p \mid \ell-1$ and $k$ be an even integer. We use deformation theory of pseudo-representations to study the completion of the Hecke algebra acting on the space of cuspidal modular forms of weight $k
Externí odkaz:
http://arxiv.org/abs/2106.04551
Autor:
Deo, Shaunak V.
Given a continuous, odd, reducible and semi-simple $2$-dimensional representation $\bar\rho_0$ of $G_{\mathbb{Q},Np}$ over a finite field of odd characteristic $p$, we study the relation between the universal deformation ring of the pseudo-representa
Externí odkaz:
http://arxiv.org/abs/2105.05823
Publikováno v:
Alg. Number Th. 18 (2024) 1465-1496
We prove that the Galois pseudo-representation valued in the mod $p^n$ cuspidal Hecke algebra for GL(2) over a totally real number field $F$, of parallel weight $1$ and level prime to $p$, is unramified at any place above $p$. The same is true for th
Externí odkaz:
http://arxiv.org/abs/1911.11196
Autor:
Deo, Shaunak V.
Given a continuous, odd, semi-simple $2$-dimensional representation of $G_{\mathbb{Q},Np}$ over a finite field of odd characteristic $p$ and a prime $\ell$ not dividing $Np$, we study the relation between the universal deformation rings of the corres
Externí odkaz:
http://arxiv.org/abs/1907.06608
Autor:
DEO, Shaunak V.
Publikováno v:
Journal de Théorie des Nombres de Bordeaux, 2022 Jan 01. 34(1), 189-236.
Externí odkaz:
https://www.jstor.org/stable/48676931
We propose an algebraic definition of the space of l-new mod-p modular forms for Gamma0(Nl) in the case that l is prime to N, which naturally generalizes to a notion of newforms modulo p in squarefree level. We use this notion of newforms to interpre
Externí odkaz:
http://arxiv.org/abs/1808.04588
Let $F$ be a totally real number field and let $f$ be a classical cuspidal $p$-regular Hilbert modular eigenform over $F$ of parallel weight $1$. Let $x$ be the point on the $p$-adic Hilbert eigenvariety $\mathcal E$ corresponding to an ordinary $p$-
Externí odkaz:
http://arxiv.org/abs/1806.11540