Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Dennis Elbrächter"'
Autor:
Claudio M. Verdun, Tim Fuchs, Pavol Harar, Dennis Elbrächter, David S. Fischer, Julius Berner, Philipp Grohs, Fabian J. Theis, Felix Krahmer
Publikováno v:
Frontiers in Public Health, Vol 9 (2021)
Background: Due to the ongoing COVID-19 pandemic, demand for diagnostic testing has increased drastically, resulting in shortages of necessary materials to conduct the tests and overwhelming the capacity of testing laboratories. The supply scarcity a
Externí odkaz:
https://doaj.org/article/bec6e7ffd46147e8ae24995e9d58e959
Publikováno v:
IEEE Transactions on Information Theory, 67 (5)
This paper develops fundamental limits of deep neural network learning by characterizing what is possible if no constraints are imposed on the learning algorithm and on the amount of training data. Concretely, we consider Kolmogorov-optimal approxima
Autor:
Tim Fuchs, David S. Fischer, Claudio Mayrink Verdun, Dennis Elbrächter, Pavol Harar, Felix Krahmer, Julius Berner, Fabian J. Theis, Philipp Grohs
Publikováno v:
Front. Publ. Health 9:583377 (2021)
Frontiers in Public Health. 2021, vol. 9, issue 1, p. 1205-1218.
Frontiers in Public Health
Frontiers in Public Health. 2021, vol. 9, issue 1, p. 1205-1218.
Frontiers in Public Health
Summary Background Due to the ongoing COVID-19 pandemic, demand for diagnostic testing has increased drastically, resulting in shortages of necessary materials to conduct the tests and overwhelming the capacity of testing laboratories. The supply sca
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d248ea6c750c869e29b7ff126ecbf6d4
https://push-zb.helmholtz-muenchen.de/frontdoor.php?source_opus=62950
https://push-zb.helmholtz-muenchen.de/frontdoor.php?source_opus=62950
Publikováno v:
2019 13th International conference on Sampling Theory and Applications (SampTA).
Although for neural networks with locally Lipschitz continuous activation functions the classical derivative exists almost everywhere, the standard chain rule is in general not applicable. We will consider a way of introducing a derivative for neural
Publikováno v:
University of Vienna-u:cris
Neural network training is usually accomplished by solving a non-convex optimization problem using stochastic gradient descent. Although one optimizes over the networks parameters, the main loss function generally only depends on the realization of t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::91d13549cd533e632f09aaf83a859b16
https://ucris.univie.ac.at/portal/en/publications/how-degenerate-is-the-parametrization-of-neural-networks-with-the-relu-activation-function(63c77dff-bb26-4c2c-a900-b835aaad663c).html
https://ucris.univie.ac.at/portal/en/publications/how-degenerate-is-the-parametrization-of-neural-networks-with-the-relu-activation-function(63c77dff-bb26-4c2c-a900-b835aaad663c).html