Zobrazeno 1 - 10
of 17
pro vyhledávání: '"Demirkiran, Cansu"'
Autor:
Demirkiran, Cansu
In recent years, the demand for computational power has skyrocketed due to the rapid advancement of artificial intelligence (AI). As we move past Moore’s Law, the limitations of traditional digital computing are pushing the exploration of alternati
Externí odkaz:
https://hdl.handle.net/2144/49259
Autor:
Fayza, Farbin, Demirkiran, Cansu, Chen, Hanning, Liu, Che-Kai, Mohan, Avi, Errahmouni, Hamza, Yun, Sanggeon, Imani, Mohsen, Zhang, David, Bunandar, Darius, Joshi, Ajay
Over the past few years, silicon photonics-based computing has emerged as a promising alternative to CMOS-based computing for Deep Neural Networks (DNN). Unfortunately, the non-linear operations and the high-precision requirements of DNNs make it ext
Externí odkaz:
http://arxiv.org/abs/2311.17801
Publikováno v:
ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA) 2024
Photonic computing is a compelling avenue for performing highly efficient matrix multiplication, a crucial operation in Deep Neural Networks (DNNs). While this method has shown great success in DNN inference, meeting the high precision demands of DNN
Externí odkaz:
http://arxiv.org/abs/2311.17323
Analog computing has reemerged as a promising avenue for accelerating deep neural networks (DNNs) due to its potential to overcome the energy efficiency and scalability challenges posed by traditional digital architectures. However, achieving high pr
Externí odkaz:
http://arxiv.org/abs/2309.10759
Achieving high accuracy, while maintaining good energy efficiency, in analog DNN accelerators is challenging as high-precision data converters are expensive. In this paper, we overcome this challenge by using the residue number system (RNS) to compos
Externí odkaz:
http://arxiv.org/abs/2306.09481
Autor:
Demirkiran, Cansu, Eris, Furkan, Wang, Gongyu, Elmhurst, Jonathan, Moore, Nick, Harris, Nicholas C., Basumallik, Ayon, Reddi, Vijay Janapa, Joshi, Ajay, Bunandar, Darius
Publikováno v:
J. Emerg. Technol. Comput. Syst. 19, 4, Article 30 (October 2023)
The number of parameters in deep neural networks (DNNs) is scaling at about 5$\times$ the rate of Moore's Law. To sustain this growth, photonic computing is a promising avenue, as it enables higher throughput in dominant general matrix-matrix multipl
Externí odkaz:
http://arxiv.org/abs/2109.01126
To close the gap between memory and processors, and in turn improve performance, there has been an abundance of work in the area of data/instruction prefetcher designs. Prefetchers are deployed in each level of the memory hierarchy, but typically, ea
Externí odkaz:
http://arxiv.org/abs/2008.00176
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Eyigör, Hülya, Eyigör, Mete, Erol, Bekir, Selçuk, Ömer Tarık, Renda, Levent, Yılmaz, Mustafa Deniz, Osma, Üstün, Demirkıran, Cansu, Gültekin, Meral, Erin, Nuray
Publikováno v:
In Brazilian Journal of Otorhinolaryngology July-August 2020 86(4):450-455
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.