Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Delphine Moussard"'
Autor:
Vincent Florens, Delphine Moussard
Publikováno v:
Canadian Journal of Mathematics
Canadian Journal of Mathematics, University of Toronto Press, 2020, pp.1-23. ⟨10.4153/S0008414X20000863⟩
Canadian Journal of Mathematics, 2020, pp.1-23. ⟨10.4153/S0008414X20000863⟩
Canadian Journal of Mathematics, University of Toronto Press, 2020, pp.1-23. ⟨10.4153/S0008414X20000863⟩
Canadian Journal of Mathematics, 2020, pp.1-23. ⟨10.4153/S0008414X20000863⟩
Gay and Kirby introduced trisections which describe any closed oriented smooth 4-manifold $X$ as a union of three four-dimensional handlebodies. A trisection is encoded in a diagram, namely three collections of curves in a closed oriented surface $\S
Autor:
Delphine Moussard
Publikováno v:
Algebraic and Geometric Topology
Algebraic and Geometric Topology, Mathematical Sciences Publishers, 2020
Algebraic and Geometric Topology, Mathematical Sciences Publishers, 2020
Kricker defined an invariant of knots in homology 3-spheres which is a rational lift of the Kontsevich integral, and proved with Garoufalidis that this invariant satisfies splitting formulas with respect to a surgery move called null-move. We define
Autor:
Emmanuel Wagner, Delphine Moussard
Publikováno v:
Journal of the Mathematical Society of Japan
Journal of the Mathematical Society of Japan, Maruzen Company Ltd, 2020, 72 (3), pp.891-907. ⟨10.2969/jmsj/82218221⟩
J. Math. Soc. Japan 72, no. 3 (2020), 891-907
Journal of the Mathematical Society of Japan, Maruzen Company Ltd, 2020, 72 (3), pp.891-907. ⟨10.2969/jmsj/82218221⟩
J. Math. Soc. Japan 72, no. 3 (2020), 891-907
International audience; For knots in S-3, it is well-known that the Alexander polynomial of a ribbon knot factorizes as f(t)f(t(-1)) for some polynomial f(t). By contrast, the Alexander polynomial of a ribbon 2-knot in S-4 is not even symmetric in ge
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::90beda00f9fc86b55dc1ddd448ef4889
https://hal.archives-ouvertes.fr/hal-03031878
https://hal.archives-ouvertes.fr/hal-03031878
Autor:
Gaël Cousin, Delphine Moussard
Publikováno v:
International Mathematics Research Notices. 2018:3388-3442
Autor:
Delphine Moussard
Publikováno v:
Geometry and Topology
Geometry and Topology, Mathematical Sciences Publishers, 2019
Geom. Topol. 23, no. 4 (2019), 2005-2050
Geometry and Topology, Mathematical Sciences Publishers, 2019, 23 (4), pp.2005-2050. ⟨10.2140/gt.2019.23.2005⟩
Geometry and Topology, Mathematical Sciences Publishers, 2019
Geom. Topol. 23, no. 4 (2019), 2005-2050
Geometry and Topology, Mathematical Sciences Publishers, 2019, 23 (4), pp.2005-2050. ⟨10.2140/gt.2019.23.2005⟩
We study a theory of finite type invariants for null-homologous knots in rational homology 3-spheres with respect to null Lagrangian-preserving surgeries. It is an analogue in the setting of the rational homology of the Goussarov-Rozansky theory for
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3db3d2fdaefd840cc3e17ca492483d15
https://hal.archives-ouvertes.fr/hal-01620930v2/file/FTI_QSKpairs.pdf
https://hal.archives-ouvertes.fr/hal-01620930v2/file/FTI_QSKpairs.pdf
Autor:
Delphine Moussard, Benjamin Audoux
Publikováno v:
International Journal of Mathematics
International Journal of Mathematics, World Scientific Publishing, 2019, 30 (5), pp.1950021
International Journal of Mathematics, 2019, 30 (5), pp.1950021. ⟨10.1142/S0129167X19500216⟩
International Journal of Mathematics, World Scientific Publishing, 2019, 30 (5), pp.1950021. ⟨10.1142/S0129167X19500216⟩
International Journal of Mathematics, 2019, 30 (5), pp.1950021
International Journal of Mathematics, World Scientific Publishing, 2019, 30 (5), pp.1950021
International Journal of Mathematics, 2019, 30 (5), pp.1950021. ⟨10.1142/S0129167X19500216⟩
International Journal of Mathematics, World Scientific Publishing, 2019, 30 (5), pp.1950021. ⟨10.1142/S0129167X19500216⟩
International Journal of Mathematics, 2019, 30 (5), pp.1950021
In the setting of finite type invariants for null-homologous knots in rational homology 3-spheres with respect to null Lagrangian-preserving surgeries, there are two candidates to be universal invariants, defined respectively by Kricker and Lescop. I
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7c38367ea5af92b2caaa0aca973d143e
http://arxiv.org/abs/1710.09730
http://arxiv.org/abs/1710.09730
Autor:
Delphine Moussard
We refine Matveev's result asserting that any two closed oriented 3-manifolds can be related by a sequence of borromean surgeries if and only if they have isomorphic first homology groups and linking pairings. Indeed, a borromean surgery induces a ca
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9216a4ec8f9b3f775a70e73b122771d9
http://arxiv.org/abs/1412.4627
http://arxiv.org/abs/1412.4627
Autor:
Delphine Moussard
Publikováno v:
Journal of Knot Theory and Its Ramifications
Journal of Knot Theory and Its Ramifications, World Scientific Publishing, 2012, 21 (5), 1250042 (21 p.). ⟨10.1142/S0218216511009947⟩
Journal of Knot Theory and Its Ramifications, World Scientific Publishing, 2012, 21 (5), 1250042 (21 p.). ⟨10.1142/S0218216511009947⟩
In this article, we give a classification of Alexander modules of null-homologous knots in rational homology spheres. We characterize these modules A equipped with their Blanchfield forms $\phi$, and the modules A such that there is a unique isomorph
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2b46364349f251b537090b9214defdcb
https://hal.archives-ouvertes.fr/hal-00588302/file/On_Alexander_modules_and_Blanchfield_forms.pdf
https://hal.archives-ouvertes.fr/hal-00588302/file/On_Alexander_modules_and_Blanchfield_forms.pdf
Autor:
Delphine Moussard
Publikováno v:
Algebr. Geom. Topol. 12, no. 4 (2012), 2389-2428
Algebraic and Geometric Topology
Algebraic and Geometric Topology, Mathematical Sciences Publishers, 2013, 12 (4), pp.2389-2428. ⟨10.2140/agt.2012.12.2389⟩
Algebraic and Geometric Topology
Algebraic and Geometric Topology, Mathematical Sciences Publishers, 2013, 12 (4), pp.2389-2428. ⟨10.2140/agt.2012.12.2389⟩
International audience; We consider the rational vector space generated by all rational homology spheres up to orientation-preserving homeomorphism, and the filtration defined on this space by Lagrangian-preserving rational homology handlebody replac
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bd145c2eb6dadbf813ea465c8948d0f6
https://projecteuclid.org/euclid.agt/1513715461
https://projecteuclid.org/euclid.agt/1513715461