Zobrazeno 1 - 10
of 98
pro vyhledávání: '"Delorme, Patrick"'
Autor:
Delorme, Patrick
We establish the analog for real homogeneous spherical varieties of the Scattering Theorem of Sakellaridis and Venkatesh (Periods and harmonic analysis on spherical varieties, Asterisque 396, (2017), Theorem 7.3.1) for p-adic wavefront spherical vari
Externí odkaz:
http://arxiv.org/abs/2305.13867
Autor:
Delorme, Patrick
We establish the analog for real spherical varieties of the Scattering Theorem of Sakellaridis and Venkatesh (\cite{SV}, Theorem 7.3.1) for p-adic spherical varieties. We use properties of the Harish-Chandra homomorphism of Knop for invariant differe
Externí odkaz:
http://arxiv.org/abs/2010.10830
Autor:
Delorme, Patrick
We show that the Hilbert subspace of $L^2(G(F)\backslash G(\A))$ generated by wave packets of Eisenstein series built from discrete series is the whole space. Together with the work of Lapid \cite{L1}, it achieves a proof of the spectral theorem of L
Externí odkaz:
http://arxiv.org/abs/2006.12893
Autor:
Delorme, Patrick
Publikováno v:
In Advances in Mathematics 1 August 2023 426
Publikováno v:
J. Amer. Math. Soc. 34 (2021), no. 3, 815-908
Given a unimodular real spherical space $Z=G/H$ we construct for each boundary degeneration $Z_I=G/H_I$ of $Z$ a Bernstein morphism $B_I: L^2(Z_I)_{\rm disc }\to L^2(Z)$. We show that $B:=\bigoplus_I B_I$ provides an isospectral $G$-equivariant morph
Externí odkaz:
http://arxiv.org/abs/1807.07541
Autor:
Delorme, Patrick, Harinck, Pascale
We introduce the notion of relative pseudocoefficient for relative discrete series of real spherical homogeneous spaces of reductive groups. We prove that such relative pseudocoefficient does not exist for semisimple symmetric spaces of type G(C)/G(R
Externí odkaz:
http://arxiv.org/abs/1803.07511
Let $Z$ be a unimodular real spherical space. We develop a theory of constant terms for tempered functions on $Z$ which parallels the work of Harish-Chandra. The constant terms $f_I$ of an eigenfunction $f$ are parametrized by subsets $I$ of the set
Externí odkaz:
http://arxiv.org/abs/1702.04678
Autor:
Delorme, Patrick, Harinck, Pascale
Publikováno v:
Pacific J. Math. 291 (2017) 121-147
Following a scheme inspired by B. Feigon, we describe the spectral side of a local relative trace formula for $G:= PGL(2,\rm E)$ relative to the symmetric subgroup $H:=PGL(2,\rm F)$ where $\rm E/\rm F$ is an unramified quadratic extension of local no
Externí odkaz:
http://arxiv.org/abs/1608.08475
Following a scheme suggested by B. Feigon, we investigate a local relative trace formula in the situation of a reductive $p$ -adic group $G$ relative to a symmetric subgroup $H= \underline{H}(F)$ where $\underline{H}$ is split over the local field $F
Externí odkaz:
http://arxiv.org/abs/1506.09112
Let S(X) be the Schwartz space of compactly supported smooth functions on the p-adic points of a spherical variety X, and let C(X) be the space of Harish-Chandra Schwartz functions. Under assumptions on the spherical variety, which are satisfied when
Externí odkaz:
http://arxiv.org/abs/1410.2279