Zobrazeno 1 - 10
of 37
pro vyhledávání: '"Delisle, Laurent"'
This study investigates the formation and dynamics of solitons in Bose-Einstein condensates (BECs) within dark traps generated by two crossed Laguerre-Gaussian (LG) beams with varying azimuthal indices $\ell$. As the index $\ell$ increases, the poten
Externí odkaz:
http://arxiv.org/abs/2412.07574
Autor:
Delisle, Laurent
Publikováno v:
J. Phys. A: Math. Theor. 56 455202 (2023)
This article presents a novel application of the Hirota bilinear formalism to the $N=2$ supersymmetric KdV and Burgers equations. This new approach avoids splitting N=2 equations into two $N=1$ equations. We use the super Bell polynomials to obtain b
Externí odkaz:
http://arxiv.org/abs/2306.05220
Autor:
Delisle, Laurent
Dans cette thèse, nous analysons les propriétés géométriques des surfaces obtenues des solutions classiques des modèles sigma bosoniques et supersymétriques en deux dimensions ayant pour espace cible des variétés grassmanniennes G(m,n). Plus
Externí odkaz:
http://hdl.handle.net/1866/11415
Autor:
Delisle, Laurent
We present a bilinear Hirota representation of the N=2 supersymmetric extension of the Korteweg-de Vries equation. This representation is deduced using binary Bell polynomials, hierarchies and fermionic limits. We, also, propose a new approach for th
Externí odkaz:
http://arxiv.org/abs/1509.03137
Autor:
Delisle, Laurent
We present a characterisation of Maurer-Cartan 1-superforms associated to the two-dimensional supersymmetric $\mathbb{C}P^{N-1}$ sigma model. We, then, solve the associated linear spectral problem and use its solutions to describe an integrable syste
Externí odkaz:
http://arxiv.org/abs/1508.06748
A new approach for the construction of finite action solutions of the supersymmetric $\mathbb{C}P^{N-1}$ sigma model is presented. We show that this approach produces more non-holomorphic solutions than those obtained in previous approaches. We study
Externí odkaz:
http://arxiv.org/abs/1507.08508
We investigate the geometric characteristics of constant gaussian curvature surfaces obtained from solutions of the $G(m,n)$ sigma model. Most of these solutions are related to the Veronese sequence. We show that we can distinguish surfaces with the
Externí odkaz:
http://arxiv.org/abs/1412.1368
Publikováno v:
J. Math. Phys. 56, 023506 (2015)
Constant curvature surfaces are constructed from the finite action solutions of the supersymmetric $\mathbb{C}P^{N-1}$ sigma model. It is shown that there is a unique holomorphic solution which leads to constant curvature surfaces: the generalized Ve
Externí odkaz:
http://arxiv.org/abs/1406.3371
Autor:
Delisle, Laurent, Mosaddeghi, Masoud
Publikováno v:
J. Phys. A: Math. Theor. 46 (2013) 115203
In this paper, we propose the study of the Boiti-Leon-Manna-Pempinelli equation from two point of views: the classical and supersymmetric cases. In the classical case, we construct new solutions of this equation from Wronskian formalism and Hirota me
Externí odkaz:
http://arxiv.org/abs/1211.1165
We generalize here our general procedure for constructing constant curvature maps of 2-spheres into Grassmannian manifolds G(m,n) this time concentrating our attention on maps which are non-holomorphic. We present some expressions describing these so
Externí odkaz:
http://arxiv.org/abs/1210.5864