Zobrazeno 1 - 10
of 37
pro vyhledávání: '"Delacourt, Martin"'
Given a fixpoint of a substitution, the associated Dumont-Thomas numeration system provides a convenient immediate way to describe the fixpoint as an automatic sequence. In order to study first-order properties of these fixpoints using B\"uchi-Bruy\`
Externí odkaz:
http://arxiv.org/abs/2406.09868
Autor:
Delacourt, Martin
Publikováno v:
AUTOMATA 2021, Jul 2021, Marseille, France
The generic limit set of a cellular automaton is a topologically dened set of congurations that intends to capture the asymptotic behaviours while avoiding atypical ones. It was dened by Milnor then studied by Djenaoui and Guillon rst, and by T{\"o}r
Externí odkaz:
http://arxiv.org/abs/2106.07907
We consider the typical asymptotic behaviour of cellular automata of higher dimension (greater than 2). That is, we take an initial configuration at random according to a Bernoulli (i.i.d) probability measure, iterate some cellular automaton, and con
Externí odkaz:
http://arxiv.org/abs/1512.03696
This paper concerns $\mu$-limit sets of cellular automata: sets of configurations made of words whose probability to appear does not vanish with time, starting from an initial $\mu$-random configuration. More precisely, we investigate the computation
Externí odkaz:
http://arxiv.org/abs/1309.6730
The $\mu$-limit set of a cellular automaton is a subshift whose forbidden patterns are exactly those, whose probabilities tend to zero as time tends to in- finity. In this article, for a given subshift in a large class of subshifts, we propose the co
Externí odkaz:
http://arxiv.org/abs/1012.1333
This paper studies directional dynamics in cellular automata, a formalism previously introduced by the third author. The central idea is to study the dynamical behaviour of a cellular automaton through the conjoint action of its global rule (temporal
Externí odkaz:
http://arxiv.org/abs/1001.5470
Autor:
Delacourt, Martin1 martin.delacourt@gmail.com, Hellouin de Menibus, Benjamin benjamin.hellouin@gmail.com
Publikováno v:
Theory of Computing Systems. Nov2017, Vol. 61 Issue 4, p1178-1213. 36p.
Autor:
DELACOURT, MARTIN1, PIVATO, MARCUS2 pivato@xaravve.trentu.ca
Publikováno v:
Journal of Cellular Automata. 2009, Vol. 4 Issue 2, p111-124. 14p. 2 Diagrams, 1 Chart, 4 Graphs.
We prove a characterisation of \mu-limit sets of two-dimensional cellular automata, extending existing results in the one-dimensional case. This sets describe the typical asymptotic behaviour of the cellular automaton, getting rid of exceptional case
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::3463599fafde152725c52c36a4f690a5
Autor:
Delacourt- , Martin
Publikováno v:
Informes CONICYT
CONICYT Chile
instacron:CONICYT
CONICYT Chile
instacron:CONICYT
FONDECYT FONDECYT
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______3056::16c05a2885cda57ffe9b02ebc28d9522