Zobrazeno 1 - 4
of 4
pro vyhledávání: '"Dejan Porjazovski"'
With the rapid advancement in automatic speech recognition and natural language understanding, a complementary field (paralin- guistics) emerged, focusing on the non-verbal content of speech. The ACM Multimedia 2022 Computational Paralinguistics Chal
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c5d98783c88caa19c172a7449dcb3a3e
https://aaltodoc.aalto.fi/handle/123456789/118886
https://aaltodoc.aalto.fi/handle/123456789/118886
Autor:
Anssi Moisio, Dejan Porjazovski, Aku Rouhe, Yaroslav Getman, Anja Virkkunen, Ragheb AlGhezi, Mietta Lennes, Tamás Grósz, Krister Lindén, Mikko Kurimo
Publikováno v:
Language Resources and Evaluation.
Funding Information: This work was partly funded by Academy of Finland (Grant Numbers 337073, 329267, 322625 and 345790). The computational resources were provided by Aalto ScienceIT. Publisher Copyright: © 2022, The Author(s). The Donate Speech cam
Publikováno v:
Text, Speech, and Dialogue ISBN: 9783030835262
TDS
TDS
Named entities are heavily used in the field of spoken language understanding, which uses speech as an input. The standard way of doing named entity recognition from speech involves a pipeline of two systems, where first the automatic speech recognit
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::6a5a05766f8cb2c4114885789c68238c
https://doi.org/10.1007/978-3-030-83527-9_40
https://doi.org/10.1007/978-3-030-83527-9_40
Publikováno v:
Proceedings of the 2nd International Workshop on AI for Smart TV Content Production, Access and Delivery
openaire: EC/H2020/780069/EU//MeMAD In this paper we present a Bidirectional LSTM neural network with a Conditional Random Field layer on top, which utilizes word, character and morph embeddings in order to perform named entity recognition on various
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2845b6691f161d93411f917682fe764a