Zobrazeno 1 - 10
of 39
pro vyhledávání: '"Deineka, Oleksandra"'
A dispersive implementation of the $a_0(980)$ resonance to $(g-2)_\mu$ requires the knowledge of the double-virtual $S$-wave $\gamma^*\gamma^*\to\pi\eta/ K K(I=1)$ amplitudes. To obtain these amplitudes, we used a modified coupled-channel Muskhelishv
Externí odkaz:
http://arxiv.org/abs/2410.12894
A dispersive implementation of the $a_0(980)$ resonance to $(g-2)_\mu$ requires the knowledge of the double-virtual $S$-wave $\gamma^*\gamma^*\to\pi\eta / K\bar{K}_{I=1}$ amplitudes. To obtain these amplitudes we used a modified coupled-channel Muskh
Externí odkaz:
http://arxiv.org/abs/2309.01195
We present a data-driven analysis of the S-wave $\pi\pi \to \pi\pi\,(I=0,2)$ and $\pi K \to \pi K\,(I=1/2, 3/2)$ reactions using the partial-wave dispersion relation. The contributions from the left-hand cuts are parametrized using the expansion in a
Externí odkaz:
http://arxiv.org/abs/2203.02215
In this paper, we present a data-driven analysis of the $\gamma\gamma\to D^+D^-$ and $\gamma\gamma\to D^0\bar{D}^0$ reactions from threshold up to 4.0 GeV in the $D\bar{D}$ invariant mass. For the $S$-wave contribution, we adopt a partial-wave disper
Externí odkaz:
http://arxiv.org/abs/2111.15033
Publikováno v:
Phys. Rev. D 103, 114023 (2021)
We present a data-driven analysis of the resonant S-wave $\pi\pi \to \pi\pi$ and $\pi K \to \pi K$ reactions using the partial-wave dispersion relation. The contributions from the left-hand cuts are accounted for using the Taylor expansion in a suita
Externí odkaz:
http://arxiv.org/abs/2012.11636
A dispersive estimate of the a0 (980) contribution to hadronic light-by-light scattering in (푔 − 2)µ .
Publikováno v:
EPJ Web of Conferences. 2/16/2024, Vol. 291, p1-4. 4p.
In this paper, we present a dispersive analysis of the double-virtual photon-photon scattering to two pions up to 1.5 GeV. Through unitarity, this process is very sensitive to hadronic final state interaction. For the $s$-wave, we use a coupled-chann
Externí odkaz:
http://arxiv.org/abs/1909.04158
Publikováno v:
EPJ Web of Conferences, Vol 291, p 02011 (2024)
A dispersive implementation of the a0(980) resonance to (𝑔 − 2)µ requires the knowledge of the double-virtual S-wave γ * γ * → πη / KK¯I = 1 am plitudes. To obtain these amplitudes we used a modified coupled-channel Muskhelishvili-Omnès
Externí odkaz:
https://doaj.org/article/c215ad2418474b45a99eb9c1b54a3bb6
The theoretical analysis of the $\gamma\gamma \to \pi^0\eta$ process is presented within the energy range up to 1.4 GeV. The $S$-wave resonance $a_0(980)$ is described involving the coupled channel dispersive framework and the $D$-wave $a_2(1320)$ is
Externí odkaz:
http://arxiv.org/abs/1808.04117
Publikováno v:
Phys. Rev. D 96, 114018 (2017)
We present a theoretical study of the $\gamma\gamma \to \pi\eta$ process from the threshold up to 1.4 GeV in the $\pi\eta$ invariant mass. For the s-wave $a_0(980)$ resonance state we adopt a dispersive formalism using a coupled-channel Omn\`es repre
Externí odkaz:
http://arxiv.org/abs/1709.08595