Zobrazeno 1 - 10
of 27
pro vyhledávání: '"Dehak, Reda"'
This paper describes our submitted systems to the ASVspoof 5 Challenge Track 1: Speech Deepfake Detection - Open Condition, which consists of a stand-alone speech deepfake (bonafide vs spoof) detection task. Recently, large-scale self-supervised mode
Externí odkaz:
http://arxiv.org/abs/2409.05032
Publikováno v:
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024), pages 8963-8974, Torino, Italia. ELRA and ICCL
InaGVAD is an audio corpus collected from 10 French radio and 18 TV channels categorized into 4 groups: generalist radio, music radio, news TV, and generalist TV. It contains 277 1-minute-long annotated recordings aimed at representing the acoustic d
Externí odkaz:
http://arxiv.org/abs/2406.04429
Recent advancements in Self-Supervised Learning (SSL) have shown promising results in Speaker Verification (SV). However, narrowing the performance gap with supervised systems remains an ongoing challenge. Several studies have observed that speech re
Externí odkaz:
http://arxiv.org/abs/2406.02285
Autor:
Lepage, Theo, Dehak, Reda
Self-Supervised Learning (SSL) frameworks became the standard for learning robust class representations by benefiting from large unlabeled datasets. For Speaker Verification (SV), most SSL systems rely on contrastive-based loss functions. We explore
Externí odkaz:
http://arxiv.org/abs/2404.14913
Autor:
Lepage, Theo, Dehak, Reda
Publikováno v:
Proc. INTERSPEECH 2023
Most state-of-the-art self-supervised speaker verification systems rely on a contrastive-based objective function to learn speaker representations from unlabeled speech data. We explore different ways to improve the performance of these methods by: (
Externí odkaz:
http://arxiv.org/abs/2306.03664
Publikováno v:
EGC 2023, vol. RNTI-E-39, pp.19-30
Toxic comment detection on social media has proven to be essential for content moderation. This paper compares a wide set of different models on a highly skewed multi-label hate speech dataset. We consider inference time and several metrics to measur
Externí odkaz:
http://arxiv.org/abs/2301.11125
Autor:
Lepage, Théo, Dehak, Réda
Publikováno v:
INTERSPEECH 2022, September 18-22, Incheon, Korea
State-of-the-art speaker verification systems are inherently dependent on some kind of human supervision as they are trained on massive amounts of labeled data. However, manually annotating utterances is slow, expensive and not scalable to the amount
Externí odkaz:
http://arxiv.org/abs/2207.05506
Autor:
Villalba, Jesús, Chen, Nanxin, Snyder, David, Garcia-Romero, Daniel, McCree, Alan, Sell, Gregory, Borgstrom, Jonas, García-Perera, Leibny Paola, Richardson, Fred, Dehak, Réda, Torres-Carrasquillo, Pedro A., Dehak, Najim
Publikováno v:
In Computer Speech & Language March 2020 60
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.