Zobrazeno 1 - 10
of 15
pro vyhledávání: '"Degenerate and singular elliptic equation"'
Publikováno v:
Communications in Partial Differential Equations. 46:310-361
We consider a class of equations in divergence form with a singular/degenerate weight $$-\mathrm{div}(|y|^a A(x,y)\nabla u)=|y|^a f(x,y)\; \quad\textrm{or} \ \textrm{div}(|y|^aF(x,y))\;.$$ Under suitable regularity assumptions for the matrix $A$ and
Autor:
Felli, Veronica, Siclari, Giovanni
Sobolev-type regularity results are proved for solutions to a class of second order elliptic equations with a singular or degenerate weight, under non-homogeneous Neumann conditions. As an application a Pohozaev-type identity for weak solutions is de
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0a4e7a80ba395d7c4d215dca08d36e74
Publikováno v:
Studia Universitatis Babeş-Bolyai, Mathematica; 2010, Issue 4, p91-98, 8p
Autor:
Le, Nam Q.
Publikováno v:
Communications in Contemporary Mathematics; Feb2018, Vol. 20 Issue 1, p-1, 38p
Autor:
Le, Nam Q.
We use the method of sliding paraboloids to establish a Harnack inequality for linear, degenerate and singular elliptic equation with unbounded lower order terms. The equations we consider include uniformly elliptic equations and linearized Monge-Amp
Externí odkaz:
http://arxiv.org/abs/1603.04763
Autor:
Yaotian Shen1, Zhihui Chen1 mazhchen@scut.edu.cn
Publikováno v:
Journal of Inequalities & Applications. 2009, Vol. 2009, Special section p1-24. 24p.
Autor:
Farina, Alberto, Valdinoci, Enrico
Publikováno v:
Calculus of Variations & Partial Differential Equations; Sep2008, Vol. 33 Issue 1, p1-35, 35p
Autor:
SHEN YAOTIAN, CHEN ZHIHUI
Publikováno v:
Journal of Inequalities & Applications; 2005, Vol. 2005 Issue 3, p207-219, 13p
Autor:
Franchi, Bruno, Tesi, Maria Carla
Publikováno v:
NoDEA: Nonlinear Differential Equations & Applications; Nov2001, Vol. 8 Issue 4, p363-387, 25p
Autor:
Nam Q. Le
Publikováno v:
Communications in Contemporary Mathematics. 20:1750012
We use the method of sliding paraboloids to establish a Harnack inequality for linear, degenerate and singular elliptic equation with unbounded lower order terms. The equations we consider include uniformly elliptic equations and linearized Monge–A