Zobrazeno 1 - 10
of 208
pro vyhledávání: '"Defant, Andreas"'
We investigate projection constants within classes of multivariate polynomials over finite-dimensional real Hilbert spaces. Specifically, we consider the projection constant for spaces of spherical harmonics and spaces of homogeneous polynomials as w
Externí odkaz:
http://arxiv.org/abs/2405.12123
Asymptotic insights for projection, Gordon-Lewis and Sidon constants in Boolean cube function spaces
The main aim of this work is to study important local Banach space constants for Boolean cube function spaces. Specifically, we focus on $\mathcal{B}_{\mathcal{S}}^N$, the finite-dimensional Banach space of all real-valued functions defined on the $N
Externí odkaz:
http://arxiv.org/abs/2302.00233
Given a frequency sequence $\omega=(\omega_n)$ and a finite subset $J \subset \mathbb{N}$, we study the space $\mathcal{H}_{\infty}^{J}(\omega)$ of all Dirichlet polynomials $D(s) := \sum_{n \in J} a_n e^{-\omega_n s}, \, s \in \mathbb{C}$. The main
Externí odkaz:
http://arxiv.org/abs/2302.00231
We study the projection constant of the space of operators on $n$-dimensional Hilbert spaces, with the trace norm, $\mathcal S_1(n)$. We show an integral formula for the projection constant of $\mathcal S_1(n)$; namely $ \boldsymbol{\lambda}\big(\mat
Externí odkaz:
http://arxiv.org/abs/2302.00218
The general problem we address is to develop new methods in the study of projection constants of Banach spaces of multivariate polynomials. The relative projection constant $\boldsymbol{\lambda}(X,Y)$ of a subspace $X$ of a Banach $Y$ is the smallest
Externí odkaz:
http://arxiv.org/abs/2208.06467
Autor:
Defant, Andreas, Schoolmann, Ingo
Given a frequency $\lambda = (\lambda_n)$ and $\ell \ge 0$, we introduce the scale of Banach spaces $H_{\infty,\ell}^{\lambda}[Re > 0]$ of holomorphic functions $f$ on the open right half-plane $[Re > 0]$, which satisfy $(A)$ the growth condition $|f
Externí odkaz:
http://arxiv.org/abs/2107.10153
Autor:
Defant, Andreas, Schoolmann, Ingo
A particular consequence of the famous Carleson-Hunt theorem is that the Taylor series expansions of bounded holomorphic functions on the open unit disk converge almost everywhere on the boundary, whereas on single points the convergence may fail. In
Externí odkaz:
http://arxiv.org/abs/2107.10145
We prove stronger variants of a multiplier theorem of Kislyakov. The key ingredients are based on ideas of Kislaykov and the Kahane-Salem-Zygmund inequality. As a by-product we show various multiplier theorems for spaces of trigonometric polynomials
Externí odkaz:
http://arxiv.org/abs/2107.10131