Zobrazeno 1 - 10
of 1 429
pro vyhledávání: '"DeepSurv"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Lei, Jie, Xu, Xin, Xu, Junrui, Liu, Jia, Wang, Yi, Wu, Chao, Zhang, Renquan, Zhang, Zhemin, Jiang, Tao
Publikováno v:
In iScience 17 November 2023 26(11)
Autor:
Jie Lei, Xin Xu, Junrui Xu, Jia Liu, Yi Wang, Chao Wu, Renquan Zhang, Zhemin Zhang, Tao Jiang
Publikováno v:
iScience, Vol 26, Iss 11, Pp 108200- (2023)
Summary: The traditional prognostic model may induce the possibility of incorrect assessment of mortality risk under the assumption of linearity. It is urgent to develop a non-linearity precise prognostic model for achieving personalized medicine in
Externí odkaz:
https://doaj.org/article/3bb75a29efc74bc692a7f2e8ca7247e6
Autor:
Bin Yang, Chengxing Liu, Ren Wu, Jing Zhong, Ang Li, Lu Ma, Jian Zhong, Saisai Yin, Changsheng Zhou, Yingqian Ge, Xinwei Tao, Longjiang Zhang, Guangming Lu
Publikováno v:
Frontiers in Oncology, Vol 12 (2022)
ObjectiveTo develop and validate a DeepSurv nomogram based on radiomic features extracted from computed tomography images and clinicopathological factors, to predict the overall survival and guide individualized adjuvant chemotherapy in patients with
Externí odkaz:
https://doaj.org/article/ec3093a9be5d4d63b089d6bd6cacc6f8
Autor:
Sun, Meng1 (AUTHOR), Sun, Jikui1 (AUTHOR) jikuisun2015@163.com, Li, Meng1 (AUTHOR) drlimeng@126.com
Publikováno v:
Scientific Reports. 6/27/2024, Vol. 14 Issue 1, p1-11. 11p.
Publikováno v:
Quantitative Biology. Jun2024, Vol. 12 Issue 2, p205-214. 10p.
Autor:
Phawis Thammasorn, Stephanie K. Schaub, Daniel S. Hippe, Matthew B. Spraker, Jan C. Peeken, Landon S. Wootton, Paul E. Kinahan, Stephanie E. Combs, Wanpracha A. Chaovalitwongse, Matthew J. Nyflot
Publikováno v:
IEEE Access, Vol 10, Pp 8005-8020 (2022)
State-of-the-art deep survival prediction approaches expand network parameters to accommodate performance over a fine discretization of output time. For medical applications where data are limited, the regression-based Deepsurv approach is more advan
Externí odkaz:
https://doaj.org/article/c12a178c8534438380a3c36935a723ef
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Guo, Yu1,2,3 (AUTHOR), Yu, Fang1 (AUTHOR), Jiang, Fang-Fang1,2 (AUTHOR), Yin, Sun-Jun1 (AUTHOR), Jiang, Meng-Han1,2 (AUTHOR), Li, Ya-Jia1,2 (AUTHOR), Yang, Hai-Ying1,2 (AUTHOR), Chen, Li-Rong1,2 (AUTHOR), Cai, Wen-Ke4 (AUTHOR) caiwenke002@126.com, He, Gong-Hao1 (AUTHOR) gonghow@hotmail.com
Publikováno v:
Journal of Translational Medicine. 8/6/2024, Vol. 22 Issue 1, p1-10. 10p.
Autor:
Katzman, Jared, Shaham, Uri, Bates, Jonathan, Cloninger, Alexander, Jiang, Tingting, Kluger, Yuval
Medical practitioners use survival models to explore and understand the relationships between patients' covariates (e.g. clinical and genetic features) and the effectiveness of various treatment options. Standard survival models like the linear Cox p
Externí odkaz:
http://arxiv.org/abs/1606.00931