Zobrazeno 1 - 10
of 44
pro vyhledávání: '"Deekshitha G"'
Autor:
Abhayjeet Singh, Amala Nagireddi, Anjali Jayakumar, Deekshitha G, Jesuraja Bandekar, Roopa R, Sandhya Badiger, Sathvik Udupa, Saurabh Kumar, Prasanta Kumar Ghosh, Hema A Murthy, Heiga Zen, Pranaw Kumar, Kamal Kant, Amol Bole, Bira Chandra Singh, Keiichi Tokuda, Mark Hasegawa-Johnson, Philipp Olbrich
Publikováno v:
IEEE Open Journal of Signal Processing, Vol 5, Pp 790-798 (2024)
The Lightweight, Multi-speaker, Multi-lingual Indic Text-to-Speech (LIMMITS'23) challenge is organized as part of the ICASSP 2023 Signal Processing Grand Challenge. LIMMITS'23 aims at the development of a lightweight, multi-speaker, multi-lingual Tex
Externí odkaz:
https://doaj.org/article/30416475bd804b8ea7e7a6b9878069a3
Autor:
Deekshitha G, Leena Mary
Publikováno v:
Journal of King Saud University - Computer and Information Sciences. 34:7313-7323
Language-independent spoken term detection (LI-STD) refers to the process of locating the occurrences of spoken queries from speech databases of any language. This paper alization of a multilingual broad phoneme classifier (BPC) and its application f
Autor:
Anish Bhanushali, Grant Bridgman, Deekshitha G, Prasanta Ghosh, Pratik Kumar, Saurabh Kumar, Adithya Raj Kolladath, Nithya Ravi, Aaditeshwar Seth, Ashish Seth, Abhayjeet Singh, Vrunda Sukhadia, Umesh S, Sathvik Udupa, Lodagala V. S. V. Durga Prasad
Publikováno v:
Interspeech 2022.
Autor:
Deekshitha G, Leena Mary
Publikováno v:
IET Signal Processing. 14:602-613
Spoken Term Detection (STD) is the process of locating the occurrences of spoken queries in a given speech database. Generally, two methods are adopted for STD: an ASR based sequence matching and ASR-free, feature-based template matching. If a well-p
Autor:
Leena Mary, Deekshitha G
Publikováno v:
International Journal of Speech Technology. 23:653-667
In modern multilingual societies, there is a demand for multilingual Automatic Speech Recognition (ASR) and Spoken Term Detection (STD). Multilingual Spoken Term Detection refers to the process of retrieving appropriate audio files from a vast multil
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
2019 2nd International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT).
Different studies done on broad phoneme classification reveal that the realization of a language independent speech system is a challenging task. The main aim of this work resides in the realization of language independent broad phoneme classificatio
Autor:
Leena Mary, Deekshitha G
This book presents techniques for audio search, aimed to retrieve information from massive speech databases by using audio query words. The authors examine different features, techniques and evaluation measures attempted by researchers around the wor
Autor:
Leena Mary, Deekshitha G
Publikováno v:
TENCON
Depending on the acoustic properties, sound units can be grouped into six broad categories as Vowels (V), Nasals (N), Fricatives (F), Approximants (A), Plosives (P) and Silence (S). This paper proposes a set of signal based features for broad phoneme
Autor:
Deekshitha G, Leena Mary
Publikováno v:
SpringerBriefs in Speech Technology ISBN: 9783319977607
The technology of audio search has now improved to search and retrieve any unspecified spoken word from an audio database with reasonable accuracy. This is termed as Spoken Term Detection (STD). STD can be broadly classified into Text-based STD and Q
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::cdc9f72860d7c0e00f0acacf16059971
https://doi.org/10.1007/978-3-319-97761-4_5
https://doi.org/10.1007/978-3-319-97761-4_5