Zobrazeno 1 - 10
of 51
pro vyhledávání: '"Debora Amadori"'
Autor:
Debora Amadori, Cleopatra Christoforou
We consider a hydrodynamic model of flocking-type with all-to-all interaction kernel in one-space dimension and establish global existence of entropy weak solutions with concentration to the Cauchy problem for any BV initial data that has finite tota
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f723aa5b4c689ac05d10111d81c50549
The dynamics of Kuramoto oscillators is investigated in terms of the exact response theory based on the Dissipation Function, which has been introduced in the field of nonequilibrium molecular dynamics. While linear response theory is a cornerstone o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c08a48c0be55f3376f5cb9a655ddf09c
Autor:
Debora Amadori, Laurent Gosse
Publikováno v:
Annales de l Institut Henri Poincaré. Analyse non linéaire (2016). doi:10.1016/j.anihpc.2015.01.001
info:cnr-pdr/source/autori:Amadori, Debora; Gosse, Laurent/titolo:Stringent error estimates for one-dimensional, space-dependent 2 x 2 relaxation systems/doi:10.1016%2Fj.anihpc.2015.01.001/rivista:Annales de l Institut Henri Poincaré. Analyse non linéaire/anno:2016/pagina_da:/pagina_a:/intervallo_pagine:/volume
Annales de l'Institut Henri Poincaré (C) Non Linear Analysis
Annales de l'Institut Henri Poincaré (C) Non Linear Analysis, Elsevier, 2015, pp.23. ⟨10.1016/j.anihpc.2015.01.001⟩
info:cnr-pdr/source/autori:Amadori, Debora; Gosse, Laurent/titolo:Stringent error estimates for one-dimensional, space-dependent 2 x 2 relaxation systems/doi:10.1016%2Fj.anihpc.2015.01.001/rivista:Annales de l Institut Henri Poincaré. Analyse non linéaire/anno:2016/pagina_da:/pagina_a:/intervallo_pagine:/volume
Annales de l'Institut Henri Poincaré (C) Non Linear Analysis
Annales de l'Institut Henri Poincaré (C) Non Linear Analysis, Elsevier, 2015, pp.23. ⟨10.1016/j.anihpc.2015.01.001⟩
Sharp and local L 1 a posteriori error estimates are established for so-called “well-balanced” BV (hence possibly discontinuous) numerical approximations of 2 × 2 space-dependent Jin–Xin relaxation systems under sub-characteristic condition. A
In this paper we study the long time behavior for a semilinear wave equation with space-dependent and nonlinear damping term. After rewriting the equation as a first order system, we define a class of approximate solutions that employ tipical tools o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b9d70653537a43462d623e6c075aba3e
Autor:
Debora Amadori, Jinyeong Park
Publikováno v:
Springer Proceedings in Mathematics & Statistics ISBN: 9783319915449
In this note, we study the emergent dynamics of the kinetic Kuramoto equation, which is a mean-field limit of the Kuramoto synchronization model. For this equation, also referred to as the Kuramoto–Sakaguchi equation Lancellotti (Transp Theory Stat
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6d3ea60770356e01211eb0a09c013d64
http://hdl.handle.net/11697/119081
http://hdl.handle.net/11697/119081
Publikováno v:
Innovative Algorithms and Analysis ISBN: 9783319492612
In this paper, we present a modified wave-front tracking algorithm which is suitable for the analysis of scalar conservation laws with nonlocal terms. This method has been first employed in Shen and Zhang (Arch Ration Mech Anal 204:837–879, 2012) t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::fc03aeb1855dea2ef2ff2c8cfb409aa3
http://hdl.handle.net/11697/108357
http://hdl.handle.net/11697/108357
The Kuramoto model is a prototype phase model describing the synchronous behavior of weakly coupled limit-cycle oscillators. When the number of oscillators is sufficiently large, the dynamics of Kuramoto ensemble can be effectively approximated by th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::aad1820245910493c1064d46b9b105be
http://hdl.handle.net/11697/108350
http://hdl.handle.net/11697/108350
Autor:
Debora Amadori, Laurent Gosse
This monograph presents, in an attractive and self-contained form, techniques based on the L1 stability theory derived at the end of the 1990s by A. Bressan, T.-P. Liu and T. Yang that yield original error estimates for so-called well-balanced numeri
Autor:
Debora Amadori, Wen Shen
Publikováno v:
Discrete & Continuous Dynamical Systems - A. 32:1481-1502
In this paper we study an integro-differential equation describing slow erosion, in a model of granular flow. In this equation the flux is non local and depends on $x$, $t$. We define approximate solutions by using a front tracking technique, adapted
Autor:
Debora Amadori, Wen Shen
Publikováno v:
Nonlinear Partial Differential Equations and Hyperbolic Wave Phenomena. :1-18