Zobrazeno 1 - 10
of 152
pro vyhledávání: '"Debicki, Krzysztof"'
For $\{B_H(t)= (B_{H,1}(t), \ldots, B_{H,d}(t))^\top,t\ge0\}$, where $\{B_{H,i}(t),t\ge 0\}, 1\le i\le d$ are mutually independent fractional Brownian motions, we obtain the exact asymptotics of $$ \mathbb P (\exists t\ge 0: A B_{H}(t) - \mu t >\nu u
Externí odkaz:
http://arxiv.org/abs/2402.03217
We study the asymptotics of sojourn time of the stationary queueing process $Q(t),t\ge0$ fed by a fractional Brownian motion with Hurst parameter $H\in(0,1)$ above a high threshold $u$. For the Brownian motion case $H=1/2$, we derive the exact asympt
Externí odkaz:
http://arxiv.org/abs/2308.15662
For fractional Brownian motion with Hurst parameter H the Berman constant is defined. In this paper we consider a general random field (rf) Z that is a spectral rf of some stationary max-stable rf X and derive the properties of the corresponding Berm
Externí odkaz:
http://arxiv.org/abs/2211.05076
For $\{X(t), t \in G_\delta\}$ a centered Gaussian process with stationary increments and a.s. sample paths on a discrete grid $G_\delta=\{0,\delta,2\delta, ...\}$, where $\delta>0$, we investigate the stationary reflected process $$Q_{\delta,X}(t) =
Externí odkaz:
http://arxiv.org/abs/2206.14712
Let $\textbf{Z}(t)=(Z_1(t) ,\ldots, Z_d(t))^\top , t \in \mathbb{R}$ where $Z_i(t), t\in \mathbb{R}$, $i=1,...,d$ are mutually independent centered Gaussian processes with continuous sample paths a.s. and stationary increments. For $\textbf{X}(t)= A
Externí odkaz:
http://arxiv.org/abs/2110.13477
We consider a family of sup-functionals of (drifted) fractional Brownian motion with Hurst parameter $H\in(0,1)$. This family includes, but is not limited to: expected value of the supremum, expected workload, Wills functional, and Piterbarg-Pickands
Externí odkaz:
http://arxiv.org/abs/2110.08788
We derive exact asymptotics of $$\mathbb{P}\left(\sup_{\mathbf{t}\in {\mathcal{A}}}X(\mathbf{t})>u\right),~ \text{as}~ u\to\infty,$$ for a centered Gaussian field $X(\mathbf{t}),~ \mathbf{t}\in \mathcal{A}\subset\mathbb{R}^n$, $n>1$ with continuous s
Externí odkaz:
http://arxiv.org/abs/2108.09225
Publikováno v:
In Journal of Mathematical Analysis and Applications 1 April 2024 532(1)
For a non-negative separable random field $Z(t), t\in \mathbb{R}^d$ satisfying some mild assumptions we show that \begin{eqnarray*} H_Z^\delta = \lim_{T\to\infty} \frac{1}{T^d} E \{\sup_{ t\in [0,T]^d \cap \delta \mathbb{Z}^d } Z(t) \} <\infty \end{e
Externí odkaz:
http://arxiv.org/abs/2105.10435
This paper is concerned with the asymptotic analysis of sojourn times of random fields with continuous sample paths. Under a very general framework we show that there is an interesting relationship between tail asymptotics of sojourn times and that o
Externí odkaz:
http://arxiv.org/abs/2101.11603