Zobrazeno 1 - 10
of 313
pro vyhledávání: '"Debergh N"'
Autor:
Debergh, N., Petit, J. -P.
We consider four subsets of the complexified spacetime algebra, namely the real even part, the real odd part, the imaginary even part and the imaginary odd part. This naturally leads to the four connected components of the Lorentz group, supplemented
Externí odkaz:
http://arxiv.org/abs/2211.07359
Autor:
Debergh, N., Petit, J.-P.
Publikováno v:
In Reports on Mathematical Physics April 2023 91(2):165-181
Autor:
Mattart, L., Magotteaux, P., Blétard, N., Brescia, L., Debergh, N., De Meester, C., Demolin, G., Dister, F., Focan, C., Francart, D., Godin, S., Houbiers, G., Jehaes, C., Jehaes, F., Namur, G., Monami, B., Verdin, V., Weerts, J., Witvrouw, N., Markiewicz, S.
Publikováno v:
Acta Chirurgica Belgica; Jun2024, Vol. 124 Issue 3, p208-216, 9p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
J. Math. Phys., 1992, V. 33, N 1, 152-160
One-dimensional nonrelativistic systems are studied when time-independent potential interactions are involved. Their supersymmetries are determined and their closed subsets generating kinematical invariance Lie superalgebras are pointed out. The stud
Externí odkaz:
http://arxiv.org/abs/math-ph/0508021
Publikováno v:
Int.J.Mod.Phys. A21 (2006) 1221-1238
We extend the exactly solvable Hamiltonian describing $f$ quantum oscillators considered recently by J. Dorignac et al. by means of a new interaction which we choose as quasi exactly solvable. The properties of the spectrum of this new Hamiltonian ar
Externí odkaz:
http://arxiv.org/abs/quant-ph/0412174
New finite-dimensional representations of specific polynomial deformations of sl(2,R) are constructed. The corresponding generators can be, in particular, realized through linear differential operators preserving a finite-dimensional subspace of mono
Externí odkaz:
http://arxiv.org/abs/quant-ph/0303062
We propose a general method for constructing quasi-exactly solvable potentials with three analytic eigenstates. These potentials can be real or complex functions but the spectrum is real. A comparison with other methods is also performed.
Externí odkaz:
http://arxiv.org/abs/quant-ph/0209080
We construct new quasi-exactly solvable one-dimensional potentials through Darboux transformations. Three directions are investigated: Reducible and two types of irreducible second-order transformations. The irreducible transformations of the first t
Externí odkaz:
http://arxiv.org/abs/quant-ph/0201105
We construct a general algorithm generating the analytic eigenfunctions as well as eigenvalues of one-dimensional stationary Schroedinger Hamiltonians. Both exact and quasi-exact Hamiltonians enter our formalism but we focus on quasi-exact interactio
Externí odkaz:
http://arxiv.org/abs/quant-ph/0201100