Zobrazeno 1 - 10
of 17
pro vyhledávání: '"Dea Gogishvili"'
Autor:
Dea Gogishvili, Eleonora M. Vromen, Sascha Koppes-den Hertog, Afina W. Lemstra, Yolande A. L. Pijnenburg, Pieter Jelle Visser, Betty M. Tijms, Marta Del Campo, Sanne Abeln, Charlotte E. Teunissen, Lisa Vermunt
Publikováno v:
Scientific Reports, Vol 13, Iss 1, Pp 1-13 (2023)
Abstract Providing an accurate prognosis for individual dementia patients remains a challenge since they greatly differ in rates of cognitive decline. In this study, we used machine learning techniques with the aim to identify cerebrospinal fluid (CS
Externí odkaz:
https://doaj.org/article/df9cdcb95df74b00868389130e51501d
Publikováno v:
PLoS Computational Biology, Vol 18, Iss 12, p e1010669 (2022)
The ubiquitous availability of genome sequencing data explains the popularity of machine learning-based methods for the prediction of protein properties from their amino acid sequences. Over the years, while revising our own work, reading submitted m
Externí odkaz:
https://doaj.org/article/13290b6b63db4786980f7959c55c0d45
Autor:
Ekaterina Mavrina, Leighann Kimble, Katharina Waury, Dea Gogishvili, Nerea Gómez de San José, Shreyasee Das, Salomé Coppens, Bárbara Fernandes Gomes, Sára Mravinacová, Anna Lidia Wojdała, Katharina Bolsewig, Sherif Bayoumy, Felicia Burtscher, Pablo Mohaupt, Eline Willemse, Charlotte Teunissen, the MIRIADE consortium
Publikováno v:
Frontiers in Neurology, Vol 13 (2022)
Proteomics studies have shown differential expression of numerous proteins in dementias but have rarely led to novel biomarker tests for clinical use. The Marie Curie MIRIADE project is designed to experimentally evaluate development strategies to ac
Externí odkaz:
https://doaj.org/article/6739cd827fa54f0a95864a402184d3e9
Autor:
Daniel Fernández-Llaneza, Silas Ulander, Dea Gogishvili, Eva Nittinger, Hongtao Zhao, Christian Tyrchan
Publikováno v:
ACS Omega, Vol 6, Iss 16, Pp 11086-11094 (2021)
Externí odkaz:
https://doaj.org/article/841c43e6fedb4fcd8e4012c94e727858
Publikováno v:
Hou, Q, Waury, K, Gogishvili, D & Feenstra, K A 2022, ' Ten quick tips for sequence-based prediction of protein properties using machine learning ', PLoS Computational Biology, vol. 18, no. 12, e1010669, pp. 1-15 . https://doi.org/10.1371/journal.pcbi.1010669
PLoS Computational Biology, 18(12):e1010669, 1-15. Public Library of Science
PLoS Computational Biology, 18(12):e1010669, 1-15. Public Library of Science
The ubiquitous availability of genome sequencing data explains the popularity of machine learning-based methods for the prediction of protein properties from their amino acid sequences. Over the years, while revising our own work, reading submitted m
Autor:
Katharina Waury, Dea Gogishvili, Rienk Nieuwland, Madhurima Chatterjee, Charlotte E. Teunissen, Sanne Abeln
Extracellular vesicles (EVs) are membranous structures released by cells into the extracellular space and are thought to be involved in cell-to-cell communication. While EVs and their cargo are promising biomarker candidates, protein sorting mechanis
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::2adf076010076c28ba7833f06d90aa2c
https://doi.org/10.1101/2023.02.01.526570
https://doi.org/10.1101/2023.02.01.526570
Autor:
Dea Gogishvili, Ellen Vromen, Sascha Koppes, Afina W Lemstra, Yolande Pijnenburg, Pieter Jelle Visser, Betty N Tijms, Marta del Campo, The Alzheimer's Disease Neuroimaging Initiative, Sanne Abeln, Charlotte E Teunissen, Lisa Vermunt
Providing an accurate prognosis for individual dementia patients remains a challenge since they greatly differ in rates of cognitive decline. In this study, we used machine learning techniques to identify cerebrospinal fluid (CSF) biomarkers that pre
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::6a64be64681054b573196d385232f2d3
https://doi.org/10.21203/rs.3.rs-2382373/v1
https://doi.org/10.21203/rs.3.rs-2382373/v1
Autor:
Petra E van der Wouden, Zhangping Xiao, Frank J. Dekker, Deng Chen, Dea Gogishvili, Rita Setroikromo, Hao Guo
Publikováno v:
Angewandte Chemie (International Ed. in English)
Angewandte Chemie (International ed. in English), 60(40), 21875-21883. WILEY-V C H VERLAG GMBH
Angewandte Chemie (International ed. in English), 60(40), 21875-21883. WILEY-V C H VERLAG GMBH
Lipoxygenase (LOX) activity provides oxidative lipid metabolites, which are involved in inflammatory disorders and tumorigenesis. Activity‐based probes to detect the activity of LOX enzymes in their cellular context provide opportunities to explore
Publikováno v:
Journal of Cheminformatics, Vol 13, Iss 1, Pp 1-18 (2021)
Journal of Cheminformatics, 13(1):47, 1-18. Chemistry Central
Journal of Cheminformatics
Gogishvili, D, Nittinger, E, Margreitter, C & Tyrchan, C 2021, ' Nonadditivity in public and inhouse data : implications for drug design ', Journal of Cheminformatics, vol. 13, no. 1, 47, pp. 1-18 . https://doi.org/10.1186/s13321-021-00525-z
Journal of Cheminformatics, 13(1):47, 1-18. Chemistry Central
Journal of Cheminformatics
Gogishvili, D, Nittinger, E, Margreitter, C & Tyrchan, C 2021, ' Nonadditivity in public and inhouse data : implications for drug design ', Journal of Cheminformatics, vol. 13, no. 1, 47, pp. 1-18 . https://doi.org/10.1186/s13321-021-00525-z
Numerous ligand-based drug discovery projects are based on structure-activity relationship (SAR) analysis, such as Free-Wilson (FW) or matched molecular pair (MMP) analysis. Intrinsically they assume linearity and additivity of substituent contributi
Autor:
Juami Hermine Mariama van Gils, Dea Gogishvili, Jan van Eck, Robbin Bouwmeester, Erik van Dijk, Sanne Abeln
Publikováno v:
BIOINFORMATICS ADVANCES
Bioinformatics advances, 2(1):vbac002
van Gils, J H M, Gogishvili, D, van Eck, J, Bouwmeester, R, van Dijk, E & Abeln, S 2022, ' How sticky are our proteins? Quantifying hydrophobicity of the human proteome ', Bioinformatics advances, vol. 2, no. 1, vbac002, pp. vbac002 . https://doi.org/10.1093/bioadv/vbac002
Bioinformatics advances, 2(1):vbac002
van Gils, J H M, Gogishvili, D, van Eck, J, Bouwmeester, R, van Dijk, E & Abeln, S 2022, ' How sticky are our proteins? Quantifying hydrophobicity of the human proteome ', Bioinformatics advances, vol. 2, no. 1, vbac002, pp. vbac002 . https://doi.org/10.1093/bioadv/vbac002
Summary Proteins tend to bury hydrophobic residues inside their core during the folding process to provide stability to the protein structure and to prevent aggregation. Nevertheless, proteins do expose some ‘sticky’ hydrophobic residues to the s
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::729649341c786774430bffcd7a2d9fbc
https://biblio.ugent.be/publication/01GK49PJF2KJZ4QFHPNRX1KZQJ
https://biblio.ugent.be/publication/01GK49PJF2KJZ4QFHPNRX1KZQJ