Zobrazeno 1 - 10
of 132
pro vyhledávání: '"De Medts, Tom"'
Autor:
De Medts, Tom, Meulewaeter, Jeroen
We study simple Lie algebras generated by extremal elements, over arbitrary fields of arbitrary characteristic. We show: (1) If the extremal geometry contains lines, then the Lie algebra admits a $5 \times 5$-grading that can be parametrized by a cub
Externí odkaz:
http://arxiv.org/abs/2407.10672
Let $\Gamma$ be a finite simplicial graph with at least two vertices, and let $G(\Gamma)$ be the associated right-angled Artin group. We describe a locally compact group $\mathcal U$ containing $G(\Gamma)$ as a cocompact lattice. If $\Gamma$ is not a
Externí odkaz:
http://arxiv.org/abs/2401.15943
Autor:
De Medts, Tom, Stout, Mathias
We extend the theory of Matsuo algebras, which are certain non-associative algebras related to 3-transposition groups, to characteristic 2. Instead of idempotent elements associated to points in the corresponding Fischer space, our algebras are now g
Externí odkaz:
http://arxiv.org/abs/2308.11360
Kantor pairs, (quadratic) Jordan pairs, and similar structures have been instrumental in the study of $\mathbb{Z}$-graded Lie algebras and algebraic groups. We introduce the notion of an operator Kantor pair, a generalization of Kantor pairs to arbit
Externí odkaz:
http://arxiv.org/abs/2303.13208
We show that primitive 4-generated axial algebras of Jordan type are at most 81-dimensional.
Comment: 16 pages
Comment: 16 pages
Externí odkaz:
http://arxiv.org/abs/2301.02509
Autor:
Bossaert, Jens, De Medts, Tom
Publikováno v:
Innov. Incidence Geom. 20 (2023) 177-208
In 2000, Marc Burger and Shahar Mozes introduced universal groups acting on trees. Such groups provide interesting examples of totally disconnected locally compact groups. Intuitively, these are the largest groups for which all local actions satisfy
Externí odkaz:
http://arxiv.org/abs/2207.12181
Autor:
Bossaert, Jens, De Medts, Tom
We introduce the notion of city products of right-angled buildings that produces a new right-angled building out of smaller ones. More precisely, if $M$ is a right-angled Coxeter diagram of rank $n$ and $\Delta_1,\dots,\Delta_n$ are right-angled buil
Externí odkaz:
http://arxiv.org/abs/2207.01320
Autor:
Bossaert, Jens, De Medts, Tom
Publikováno v:
In Journal of Algebra 15 October 2024 656:118-142
Autor:
De Medts, Tom, Stout, Mathias
Publikováno v:
In Journal of Algebra 15 July 2024 650:145-172
Autor:
De Medts, Tom, Meulewaeter, Jeroen
We construct Moufang sets, Moufang triangles and Moufang hexagons using inner ideals of Lie algebras obtained from structurable algebras via the Tits--Kantor--Koecher construction. The three different types of structurable algebras we use are, respec
Externí odkaz:
http://arxiv.org/abs/2008.02700