Zobrazeno 1 - 10
of 141 554
pro vyhledávání: '"De Bruijn"'
Autor:
Dou, Chang1 (AUTHOR), Yang, Yijie1 (AUTHOR), Zhu, Fei1 (AUTHOR), Li, BingZhi2,3 (AUTHOR) yuping.duan@tju.edu.cn, Duan, Yuping1 (AUTHOR) yuping.duan@tju.edu.cn
Publikováno v:
Briefings in Bioinformatics. Sep2024, Vol. 25 Issue 5, p1-10. 10p.
Autor:
Rahman, Amatur1 (AUTHOR) amatur003@gmail.com, Dufresne, Yoann2,3 (AUTHOR), Medvedev, Paul1,4,5 (AUTHOR)
Publikováno v:
Algorithms for Molecular Biology. 5/26/2024, Vol. 19 Issue 1, p1-11. 11p.
DNA technologies have evolved significantly in the past years enabling the sequencing of a large number of genomes in a short time. Nevertheless, the underlying computational problem is hard, and many technical factors and limitations complicate obta
Externí odkaz:
http://arxiv.org/abs/2411.09114
Autor:
Wang, Yizhong1 (AUTHOR), Li, Yang2 (AUTHOR), Wang, Cankun2 (AUTHOR), Lio, Chan-Wang Jerry2,3 (AUTHOR), Ma, Qin2,3 (AUTHOR) qin.ma@osumc.edu, Liu, Bingqiang1 (AUTHOR) qin.ma@osumc.edu
Publikováno v:
Briefings in Bioinformatics. Jan2024, Vol. 25 Issue 1, p1-8. 8p.
Autor:
Álvarez, Nicolás1 (AUTHOR) nico.alvarez@gmail.com, Becher, Verónica1,2 (AUTHOR) vbecher@dc.uba.ar, Mereb, Martín3 (AUTHOR) mmereb@gmail.com, Pajor, Ivo4 (AUTHOR) pajorivo@gmail.com, Soto, Carlos Miguel4 (AUTHOR) miguelsotocarlos@gmail.com
Publikováno v:
Discrete Applied Mathematics. Nov2024, Vol. 357, p352-364. 13p.
We study the Laplacian of the undirected De Bruijn graph over an alphabet $A$ of order $k$. While the eigenvalues of this Laplacian were found in 1998 by Delorme and Tillich [1], an explicit description of its eigenvectors has remained elusive. In th
Externí odkaz:
http://arxiv.org/abs/2410.07622
Autor:
Chang, Zuling, Wang, Qiang
Experimental results show that, when the order $n$ is odd, there are de Bruijn sequences such that the corresponding complement sequence and the reverse sequence are the same. In this paper, we propose one efficient method to generate such de Bruijn
Externí odkaz:
http://arxiv.org/abs/2408.01794
Autor:
Etzion, Tuvi
A de Bruijn array code is a set of $r \times s$ binary doubly-periodic arrays such that each binary $n \times m$ matrix is contained exactly once as a window in one of the arrays. Such a set of arrays can be viewed as a two-dimensional generalization
Externí odkaz:
http://arxiv.org/abs/2407.18122
The discrepancy of a binary string is the maximum (absolute) difference between the number of ones and the number of zeroes over all possible substrings of the given binary string. In this note we determine the minimal discrepancy that a binary de Br
Externí odkaz:
http://arxiv.org/abs/2407.17367