Zobrazeno 1 - 10
of 12
pro vyhledávání: '"Dawid Huczek"'
Autor:
Dawid Huczek, Tomasz Downarowicz
Publikováno v:
Experimental Mathematics. 31:252-268
We study atomic measures on [0,1] which are invariant both under multiplication by 2 mod1 and by 3 mod1, since such measures play an important role in deciding Furstenberg’s ×2,×3 conjecture. Our s...
Autor:
Dawid Huczek, Tomasz Downarowicz
Publikováno v:
Bulletin of the Polish Academy of Sciences Mathematics. 66:45-55
Autor:
Dawid Huczek, Bartosz Frej
Publikováno v:
Monatshefte für Mathematik. 185:61-80
We extend the result of Downarowicz (Israel J Math 165:189–210, 2008) to the case of amenable group actions, by showing that every face in the simplex of invariant measures on a zero-dimensional dynamical system with free action of an amenable grou
Autor:
Bartosz Frej, Dawid Huczek
We give a sufficient condition for a symbolic topological dynamical system with action of a countable amenable group to be an extension of the full shift, a problem analogous to those studied by Ashley, Marcus, Johnson and others for actions of $\mat
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2092c6bac2e44a1fd7fca771d4bdba17
http://arxiv.org/abs/1901.01145
http://arxiv.org/abs/1901.01145
Publikováno v:
Journal für die reine und angewandte Mathematik (Crelles Journal). 2019:277-298
We prove that for any infinite countable amenable group $G$, any $\epsilon > 0$ and any finite subset $K\subset G$, there exists a tiling (partition of $G$ into finite "tiles" using only finitely many "shapes"), where all the tiles are $(K; \epsilon)
Autor:
Bartosz Frej, Dawid Huczek
Publikováno v:
Ann. Funct. Anal. 10, no. 1 (2019), 144-156
We study doubly stochastic operators with zero entropy. We generalize three famous theorems: the Rokhlin's theorem on genericity of zero entropy, the Kushnirenko's theorem on equivalence of discrete spectrum and nullity and the Halmos-von Neumann's t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8f0119e82fd6aa6cac6927c03fa05810
Autor:
Dawid Huczek, Tomasz Downarowicz
Publikováno v:
Acta Applicandae Mathematicae. 126:117-129
We prove that every topological dynamical system (X,T) has a zero-dimensional principal extension, i.e. a zero-dimensional extension (Y,S) such that for every S-invariant measure ? on Y the conditional entropy h(?|X) is zero. This reduces the discuss
Autor:
Dawid Huczek
Publikováno v:
Colloquium Mathematicum. 127:55-66
Autor:
Tomasz Downarowicz, Dawid Huczek
Publikováno v:
Studia Mathematica. 212:1-19
We prove that every topological dynamical system (X,T) has a faithful zero-dimensional principal extension, i.e. a zero-dimensional extension (Y,S) such that for every S-invariant measureon Y the conditional entropy h(�|X) is zero, and, in addition
Autor:
Dawid Huczek
We prove that every dynamical system $X$ with free action of a countable amenable group $G$ by homeomorphisms has a zero-dimensional extension $Y$ which is faithful and principal, i.e. every $G$-invariant measure $\mu$ on $X$ has exactly one preimage
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::af06758ea68d3f080da8751db58d8670