Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Davor Pavisic"'
Publikováno v:
Anais do 5. Congresso Brasileiro de Redes Neurais.
This article describes a method, using neural networks, for classifying two- dimensional polyacrylamide gel electrophoretograms, complex biomedical images that contain proteins separated from a biological sample. The classification aims at grouping i
Publikováno v:
Neurocomputing. 16:207-224
We consider here the impact of the initial weight distribution on the network behavior. The convention in the neural field is to choose initial weights with uniform distribution between plus and minus α, usually α set to 0.5 or less. In this paper
Publikováno v:
Neural Processing Letters. 2:12-16
Classical statistical techniques for prediction reach their limitations in applications with nonlinearities in the data set; nevertheless, neural models can counteract these limitations. In this paper, we present a recurrent neural model where we ass
Publikováno v:
Artificial Intelligence in Medicine ISBN: 9783540627098
AIME
AIME
In this paper, we introduce new refinements to the approach based on dynamic recurrent neural networks (DRNN) to identify, in humans, the relationship between the muscle electromyographic (EMG) activity and the arm kinematics during the drawing of th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::b1a7a10b05f85acc7f10adc58b5a26ae
https://doi.org/10.1007/bfb0029475
https://doi.org/10.1007/bfb0029475
Publikováno v:
IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society. 26(5)
In this paper, we explore the dynamical features of a neural network model which presents two types of adaptative parameters: the classical weights between the units and the time constants associated with each artificial neuron. The purpose of this s
Publisher Summary Recurrent Neural Networks have appeared showing a better performance compared with traditional or feedforward networks. Recurrent Neural Networks are able to learn attractor dynamics, and they can store information for later use. Th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::e2d8d822b3d8b913594dfe94eddca0e8
https://doi.org/10.1016/b978-044482587-2/50025-2
https://doi.org/10.1016/b978-044482587-2/50025-2
Conference
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Conference
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.