Zobrazeno 1 - 10
of 48
pro vyhledávání: '"Davoodi, Akbar"'
The metric dimension of a graph measures how uniquely vertices may be identified using a set of landmark vertices. This concept is frequently used in the study of network architecture, location-based problems and communication. Given a graph $G$, the
Externí odkaz:
http://arxiv.org/abs/2410.08662
Autor:
Andersen, Jakob L., Davoodi, Akbar, Fagerberg, Rolf, Flamm, Christoph, Fontana, Walter, Kolčák, Juri, Laurent, Christophe V. F. P., Merkle, Daniel, Nøjgaard, Nikolai
The explosion of data available in life sciences is fueling an increasing demand for expressive models and computational methods. Graph transformation is a model for dynamic systems with a large variety of applications. We introduce a novel method of
Externí odkaz:
http://arxiv.org/abs/2404.02692
Autor:
Davoodi, Akbar, Maherani, Leila
In 2004, Karo\'nski, \L uczak and Thomason proposed $1$-$2$-$3$-conjecture: For every nice graph $G$ there is an edge weighting function $ w:E(G)\rightarrow\{1,2,3\} $ such that the induced vertex coloring is proper. After that, the total versions of
Externí odkaz:
http://arxiv.org/abs/2204.13936
Publikováno v:
In Discrete Mathematics January 2025 348(1)
Given graphs $ F_1, F_2$ and $G$, we say that $G$ is Ramsey for $(F_1,F_2)$ and we write $G\rightarrow(F_1, F_2)$, if for every edge coloring of $G$ by red and blue, there is either a red copy of $F_1$ or a blue copy of $F_2$ in $G$. The size Ramsey
Externí odkaz:
http://arxiv.org/abs/2111.02065
Autor:
Davoodi, Akbar, Maherani, Leila
Publikováno v:
In Discrete Applied Mathematics 15 September 2023 336:1-10
A clique covering of a graph $G$ is a set of cliques of $G$ such that any edge of $G$ is contained in one of these cliques, and the weight of a clique covering is the sum of the sizes of the cliques in it. The sigma clique cover number $scc(G)$ of a
Externí odkaz:
http://arxiv.org/abs/1809.01443
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Let $\cal C$ be a clique covering for $E(G)$ and let $v$ be a vertex of $G$. The valency of vertex $v$ (with respect to $\cal C$), denoted by $val_{\cal C}(v)$, is the number of cliques in $\cal C$ containing $v$. The local clique cover number of $G$
Externí odkaz:
http://arxiv.org/abs/1608.07686
Publikováno v:
European Journal of Combinatorics, Volume 69, 2018, Pages 159-162, ISSN 0195-6698
A well-known theorem of Erd\H{o}s and Gallai asserts that a graph with no path of length $k$ contains at most $\frac{1}{2}(k-1)n$ edges. Recently Gy\H{o}ri, Katona and Lemons gave an extension of this result to hypergraphs by determining the maximum
Externí odkaz:
http://arxiv.org/abs/1608.03241