Zobrazeno 1 - 10
of 61
pro vyhledávání: '"Davidsson, Anette"'
Autor:
Ochoa-Figueroa, Miguel, Valera-Soria, Carlos, Pagonis, Christos, Ressner, Marcus, Norberg, Pernilla, Sanchez-Rodriguez, Veronica, Frias-Rose, Jeronimo, Good, Elin, Davidsson, Anette
Publikováno v:
In Revista Española de Medicina Nuclear e Imagen Molecular (English Edition) January-February 2024 43(1):23-30
Autor:
Ochoa-Figueroa, Miguel, Frias-Rose, Jeronimo, Good, Elin, Sanchez-Rodriguez, Veronica, Davidsson, Anette, Pagonis, Christos
Publikováno v:
In Revista Española de Medicina Nuclear e Imagen Molecular (English Edition) September-October 2023 42(5):281-288
Autor:
Arvidsson, Ida, Davidsson, Anette, Overgaard, Niels Christian, Pagonis, Christos, Åström, Kalle, Good, Elin, Frias-Rose, Jeronimo, Heyden, Anders, Ochoa-Figueroa, Miguel *
Publikováno v:
In Journal of Nuclear Cardiology February 2023 30(1):116-126
Autor:
Davidsson, Anette
Asthma and chronic obstructive pulmonary disease (COPD) are two common inflammatory airway diseases characterized by airway inflammation and mucus hypersecretion. Prediction of the outcome of these diseases may not be performed and the need for non-i
Externí odkaz:
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-16294
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Soliman, Amira, Chang, Jose R, Etminani, Kobra, Byttner, Stefan, Davidsson, Anette, Martínez-Sanchis, Begoña, Camacho, Valle, Bauckneht, Matteo, Stegeran, Roxana, Ressner, Marcus, Agudelo-Cifuentes, Marc, Chincarini, Andrea, Brendel, Matthias, Rominger, Axel, Bruffaerts, Rose, Vandenberghe, Rik, Kramberger, Milica G, Trost, Maja, Nicastro, Nicolas, Frisoni, Giovanni B, Lemstra, Afina W, Berckel, Bart N M van, Pilotto, Andrea, Padovani, Alessandro, Morbelli, Silvia, Aarsland, Dag, Nobili, Flavio, Garibotto, Valentina, Ochoa-Figueroa, Miguel
Publikováno v:
BMC Medical Informatics and Decision Making, 22:318. BioMed Central
Soliman, Amira; Chang, Jose R; Etminani, Kobra; Byttner, Stefan; Davidsson, Anette; Martínez-Sanchis, Begoña; Camacho, Valle; Bauckneht, Matteo; Stegeran, Roxana; Ressner, Marcus; Agudelo-Cifuentes, Marc; Chincarini, Andrea; Brendel, Matthias; Rominger, Axel; Bruffaerts, Rose; Vandenberghe, Rik; Kramberger, Milica G; Trost, Maja; Nicastro, Nicolas; Frisoni, Giovanni B; ... (2022). Adopting transfer learning for neuroimaging: a comparative analysis with a custom 3D convolution neural network model. BMC medical informatics and decision making, 22(Suppl 6), p. 318. BioMed Central 10.1186/s12911-022-02054-7
BMC medical informatics and decision making
the Alzheimer’s Disease Neuroimaging Initiative 2022, ' Adopting transfer learning for neuroimaging : a comparative analysis with a custom 3D convolution neural network model ', BMC Medical Informatics and Decision Making, vol. 22, 318 . https://doi.org/10.1186/s12911-022-02054-7
Soliman, Amira; Chang, Jose R; Etminani, Kobra; Byttner, Stefan; Davidsson, Anette; Martínez-Sanchis, Begoña; Camacho, Valle; Bauckneht, Matteo; Stegeran, Roxana; Ressner, Marcus; Agudelo-Cifuentes, Marc; Chincarini, Andrea; Brendel, Matthias; Rominger, Axel; Bruffaerts, Rose; Vandenberghe, Rik; Kramberger, Milica G; Trost, Maja; Nicastro, Nicolas; Frisoni, Giovanni B; ... (2022). Adopting transfer learning for neuroimaging: a comparative analysis with a custom 3D convolution neural network model. BMC medical informatics and decision making, 22(Suppl 6), p. 318. BioMed Central 10.1186/s12911-022-02054-7
BMC medical informatics and decision making
the Alzheimer’s Disease Neuroimaging Initiative 2022, ' Adopting transfer learning for neuroimaging : a comparative analysis with a custom 3D convolution neural network model ', BMC Medical Informatics and Decision Making, vol. 22, 318 . https://doi.org/10.1186/s12911-022-02054-7
Background: In recent years, neuroimaging with deep learning (DL) algorithms have made remarkable advances in the diagnosis of neurodegenerative disorders. However, applying DL in different medical domains is usually challenged by lack of labeled dat
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::86da59e74bc4fdb983d6bc90bf7695dd
https://research.vumc.nl/en/publications/b20b03bc-7c61-407c-a9eb-1de35d3db12b
https://research.vumc.nl/en/publications/b20b03bc-7c61-407c-a9eb-1de35d3db12b
Autor:
Mahmood, Zeid1, Davidsson, Anette1, Olsson, Eva1, Leanderson, Per2, Lundberg, Anna K.3, Jonasson, Lena4 lena.jonasson@liu.se
Publikováno v:
Scientific Reports. 12/7/2020, Vol. 10 Issue 1, p1-9. 9p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Convolutional Neural Networks (CNNs) have shown their effectiveness in a variety of imaging applications including medical imaging diagnostics. However, these deep learning models are data-hungry and need enough labeled samples for the training phase
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od_______681::cb7b34e81a9fc56dccc22cbd371f71ca
http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-46942
http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-46942