Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Davide Ravotti"'
Publikováno v:
Annales Henri Poincaré. 23:923-971
We study global-local mixing for a family of accessible skew products with an exponentially mixing base and non-compact fibers, preserving an infinite measure. For a dense set of almost periodic global observables, we prove rapid mixing; and for a de
Parabolic Perturbations of Unipotent Flows on Compact Quotients of SL $${(3,\mathbb{R})}$$ ( 3 , R )
Autor:
Davide Ravotti
Publikováno v:
Ravotti, D 2019, ' Parabolic Perturbations of Unipotent Flows on Compact Quotients of SL (3, R) ', Communications in Mathematical Physics . https://doi.org/10.1007/s00220-019-03348-0
We consider a family of smooth perturbations of unipotent flows on compact quotients of SL $${(3,\mathbb{R})}$$ which are not time-changes. More precisely, given a unipotent vector field, we perturb it by adding a non-constant component in a commutin
Autor:
Davide Ravotti
Let $G$ be a connected semisimple Lie group with finite centre, and let $M= \Gamma \backslash G$ be a compact homogeneous manifold. Under a spectral gap assumption, we show that smooth time-changes of any unipotent flow on $M$ have polynomial decay o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f37540ef417098555d3e5f6ca08c0d47
http://arxiv.org/abs/2011.11213
http://arxiv.org/abs/2011.11213
Autor:
Davide Ravotti, Adam Kanigowski
Let $(h_t)_{t\in \mathbb{R}}$ be the horocycle flow acting on $(M,\mu)=(\Gamma \backslash \text{SL}(2,\mathbb{R}),\mu)$, where $\Gamma$ is a co-compact lattice in $\text{SL}(2,\mathbb{R})$ and $\mu$ is the homogeneous probability measure locally give
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8f8062ecacbfd5f05744ce5c163fb6d1
http://arxiv.org/abs/1909.08799
http://arxiv.org/abs/1909.08799
Publikováno v:
Advances in Mathematics. 385:107759
We consider completely irrational nilflows on any nilmanifold of step at least 2. We show that there exists a dense set of smooth time-changes such that any time-change in this class which is not measurably trivial gives rise to a mixing nilflow. Thi
Autor:
Davide Ravotti
Let $M = \Gamma \backslash \text{SL}(2,\mathbb{R})$ be a compact quotient of $\text{SL}(2,\mathbb{R})$ equipped with the normalized Haar measure $\text{vol}$, and let $\{h_t\}_{t \in \mathbb{R}}$ denote the horocycle flow on $M$. Given $p \in M$ and
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ac9868515b2017a70e9fa0519cf85a90
Autor:
Davide Ravotti
Publikováno v:
Ravotti, D 2018, ' Mixing for suspension flows over skew-translations and time-changes of quasi-abelian filiform nilflows ', Ergodic Theory and Dynamical Systems . https://doi.org/10.1017/etds.2018.19
We consider suspension flows over uniquely ergodic skew-translations on a $d$-dimensional torus $\mathbb{T}^d$, for $d \geq 2$. We prove that there exists a set $\mathscr{R}$ of smooth functions, which is dense in the space $\mathscr{C}(\mathbb{T}^d)
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::87bb858e8f59d23a3a26609da3dd9fa5
http://arxiv.org/abs/1706.09385
http://arxiv.org/abs/1706.09385
Autor:
Davide Ravotti
Publikováno v:
Ravotti, D 2017, ' Quantitative Mixing for Locally Hamiltonian Flows with Saddle Loops on Compact Surfaces ', Annales Henri Poincaré, vol. 18, no. 12, pp. 3815-3861 . https://doi.org/10.1007/s00023-017-0619-5, https://doi.org/10.1007/s00023-017-0619-5
Given a compact surface $\mathcal{M}$ with a smooth area form $\omega$, we consider an open and dense subset of the set of smooth closed 1-forms on $\mathcal{M}$ with isolated zeros which admit at least one saddle loop homologous to zero and we prove
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c29db24251e2b25c83fb6f75ef05dfcd