Zobrazeno 1 - 9
of 9
pro vyhledávání: '"David. T. O. Oyedokun"'
Publikováno v:
IEEE Access, Vol 12, Pp 824-839 (2024)
Pitching turbine blades into the wind increases the thrust coefficient, $C_{T}$ , which increases the power generated by the wind turbine. However, excessive $C_{T}$ increments beyond rotor mean wind speed $C_{T}$ -equivalent, tend to cause overexert
Externí odkaz:
https://doaj.org/article/fac3da1b495541a58d59c739cb42574a
Publikováno v:
IEEE Transactions on Power Delivery. 37:4911-4922
Publikováno v:
Energies, Vol 14, Iss 16, p 4943 (2021)
Layout optimization is capable of increasing turbine density and reducing wake effects in wind plants. However, such optimized layouts do not guarantee fixed T-2-T distances in any direction and would be disadvantageous if reduction in computational
Externí odkaz:
https://doaj.org/article/12243208ccfe4a05be33add200974281
Publikováno v:
2022 IEEE PES/IAS PowerAfrica.
Publikováno v:
Sustainability; Volume 14; Issue 22; Pages: 15448
In the current era of e-mobility and for the planning of sustainable grid infrastructures, developing new efficient tools for real-time grid performance monitoring is essential. Thus, this paper presents the prediction of the voltage stability margin
Publikováno v:
IEEE Transactions on Power Delivery; Dec2022, Vol. 37 Issue 6, p4911-4922, 12p
Publikováno v:
Sustainability (2071-1050); Nov2022, Vol. 14 Issue 22, p15448, 17p
Autor:
Charles, Mfon1 (AUTHOR) chrmfo001@myuct.ac.za, Oyedokun, David T. O.1 (AUTHOR) mqhele.dlodlo@uct.ac.za, Dlodlo, Mqhele1,2 (AUTHOR)
Publikováno v:
Energies (19961073). Aug2021, Vol. 14 Issue 16, p4943. 1p.
This book provides readers with emerging research that explores the theoretical and practical aspects of implementing new and innovative artificial intelligence (AI) techniques for renewable energy systems. The contributions offer broad coverage on e