Zobrazeno 1 - 10
of 14
pro vyhledávání: '"David T. Gay"'
Autor:
David T Gay
Publikováno v:
Winter Braids Lecture Notes. 5:1-19
Publikováno v:
Proceedings of the National Academy of Sciences. 115:10861-10868
Given a handle decomposition of a 4-manifold with boundary, and an open book decomposition of the boundary, we show how to produce a trisection diagram of a trisection of the 4-manifold inducing the given open book. We do this by making the original
Autor:
David T. Gay, Weiwei Wu
This volume contains the proceedings of the 2017 Georgia International Topology Conference, held from May 22–June 2, 2017, at the University of Georgia, Athens, Georgia. The papers contained in this volume cover topics ranging from symplectic topol
Publikováno v:
Notices of the American Mathematical Society. 67:1
Autor:
David T. Gay, Joan E. Licata
We use parameterized Morse theory on the pages of an open book decomposition to efficiently encode the contact topology in terms of a labelled graph on a disjoint union of tori (one per binding component). This construction allows us to generalize th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f899bca1bb323e650c029de61709cec5
Autor:
David T. Gay, András I. Stipsicz
Publikováno v:
Progress in Mathematics ISBN: 9780817682767
An important class of contact 3-manifolds comprises those that arise as links of rational surface singularities with reduced fundamental cycle. We explicitly describe symplectic caps (concave fillings) of such contact 3-manifolds. As an application,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::89ce1fb7c829624dcb2b7996eeda92d7
https://doi.org/10.1007/978-0-8176-8277-4_9
https://doi.org/10.1007/978-0-8176-8277-4_9
Autor:
David T Gay, Robion Kirby
Publikováno v:
Geom. Topol. 19, no. 5 (2015), 2465-2534
A Morse 2-function is a generic smooth map from a smooth manifold to a surface. In the absence of definite folds (in which case we say that the Morse 2-function is indefinite), these are natural generalizations of broken (Lefschetz) fibrations. We pr
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8a6c05596fc904d4bbba2e0f5deed43e
http://arxiv.org/abs/1102.0750
http://arxiv.org/abs/1102.0750
Autor:
David T Gay, András I Stipsicz
Publikováno v:
Algebr. Geom. Topol. 9, no. 4 (2009), 2203-2223
We show that every negative definite configuration of symplectic surfaces in a symplectic 4--manifold has a strongly symplectically convex neighborhood. We use this to show that, if a negative definite configuration satisfies an additional negativity
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b5e545dcf0fbf96d4bcf56fad2ce642b
https://projecteuclid.org/euclid.agt/1513797082
https://projecteuclid.org/euclid.agt/1513797082
Autor:
David T. Gay, András I. Stipsicz
We verify that the rational blow-down schemes along certain Seifert fibered 3-manifolds found by the second author, Szabo and Wahl are, in fact, symplectic operations.
20 pages
20 pages
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d1fc9856a18201d102775fa296419497
http://arxiv.org/abs/math/0703370
http://arxiv.org/abs/math/0703370
Autor:
David T Gay, Robion Kirby
Publikováno v:
Geom. Topol. 11, no. 4 (2007), 2075-2115
We show how to construct broken, achiral Lefschetz fibrations on arbitrary smooth, closed, oriented 4-manifolds. These are generalizations of Lefschetz fibrations over the 2-sphere, where we allow Lefschetz singularities with the non-standard orienta
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f2334c0da313d6fe280063318a8bfae0
http://arxiv.org/abs/math/0701084
http://arxiv.org/abs/math/0701084