Zobrazeno 1 - 10
of 18
pro vyhledávání: '"David T. Frazier"'
Autor:
David T. Frazier, Eric Renault
Publikováno v:
Econometrics, Vol 7, Iss 1, p 14 (2019)
The standard approach to indirect inference estimation considers that the auxiliary parameters, which carry the identifying information about the structural parameters of interest, are obtained from some recently identified vector of estimating equat
Externí odkaz:
https://doaj.org/article/1dde0258ca6142d9b0dfd362ab6e29ec
Autor:
Gael M. Martin, Worapree Maneesoonthorn, Andrés Ramírez-Hassan, David T. Frazier, Ruben Loaiza-Maya
Publikováno v:
International Journal of Forecasting. 38:384-406
Proper scoring rules are used to assess the out-of-sample accuracy of probabilistic forecasts, with different scoring rules rewarding distinct aspects of forecast performance. Herein, we re-investigate the practice of using proper scoring rules to pr
Autor:
Christopher Drovandi, David T. Frazier
Publikováno v:
Statistics and Computing. 32
Likelihood-free methods are useful for parameter estimation of complex models with intractable likelihood functions for which it is easy to simulate data. Such models are prevalent in many disciplines including genetics, biology, ecology and cosmolog
Autor:
Fotios Petropoulos, Daniele Apiletti, Vassilios Assimakopoulos, Mohamed Zied Babai, Devon K. Barrow, Souhaib Ben Taieb, Christoph Bergmeir, Ricardo J. Bessa, Jakub Bijak, John E. Boylan, Jethro Browell, Claudio Carnevale, Jennifer L. Castle, Pasquale Cirillo, Michael P. Clements, Clara Cordeiro, Fernando Luiz Cyrino Oliveira, Shari De Baets, Alexander Dokumentov, Joanne Ellison, Piotr Fiszeder, Philip Hans Franses, David T. Frazier, Michael Gilliland, M. Sinan Gönül, Paul Goodwin, Luigi Grossi, Yael Grushka-Cockayne, Mariangela Guidolin, Massimo Guidolin, Ulrich Gunter, Xiaojia Guo, Renato Guseo, Nigel Harvey, David F. Hendry, Ross Hollyman, Tim Januschowski, Jooyoung Jeon, Victor Richmond R. Jose, Yanfei Kang, Anne B. Koehler, Stephan Kolassa, Nikolaos Kourentzes, Sonia Leva, Feng Li, Konstantia Litsiou, Spyros Makridakis, Gael M. Martin, Andrew B. Martinez, Sheik Meeran, Theodore Modis, Konstantinos Nikolopoulos, Dilek Önkal, Alessia Paccagnini, Anastasios Panagiotelis, Ioannis Panapakidis, Jose M. Pavía, Manuela Pedio, Diego J. Pedregal, Pierre Pinson, Patrícia Ramos, David E. Rapach, J. James Reade, Bahman Rostami-Tabar, Michał Rubaszek, Georgios Sermpinis, Han Lin Shang, Evangelos Spiliotis, Aris A. Syntetos, Priyanga Dilini Talagala, Thiyanga S. Talagala, Len Tashman, Dimitrios Thomakos, Thordis Thorarinsdottir, Ezio Todini, Juan Ramón Trapero Arenas, Xiaoqian Wang, Robert L. Winkler, Alisa Yusupova, Florian Ziel
Publikováno v:
INTERNATIONAL JOURNAL OF FORECASTING
Petropoulos, F, Apiletti, D, Assimakopoulos, V, Babai, M Z, Barrow, D K, Ben Taieb, S, Bergmeir, C, Bessa, R J, Bijak, J, Boylan, J E, Browell, J, Carnevale, C, Castle, J L, Cirillo, P, Clements, M P, Cordeiro, C, Cyrino Oliveira, F L, De Baets, S, Dokumentov, A, Ellison, J, Fiszeder, P, Franses, P H, Frazier, D T, Gilliland, M, Gönül, M S, Goodwin, P, Grossi, L, Grushka-Cockayne, Y, Guidolin, M, Guidolin, M, Gunter, U, Guo, X, Guseo, R, Harvey, N, Hendry, D F, Hollyman, R, Januschowski, T, Jeon, J, Jose, V R R, Kang, Y, Koehler, A B, Kolassa, S, Kourentzes, N, Leva, S, Li, F, Litsiou, K, Makridakis, S, Martin, G M, Martinez, A B, Meeran, S, Modis, T, Nikolopoulos, K, Önkal, D, Paccagnini, A, Panagiotelis, A, Panapakidis, I, Pavía, J M, Pedio, M, Pedregal, D J, Pinson, P, Ramos, P, Rapach, D E, Reade, J J, Rostami-Tabar, B, Rubaszek, M, Sermpinis, G, Shang, H L, Spiliotis, E, Syntetos, A A, Talagala, P D, Talagala, T S, Tashman, L, Thomakos, D, Thorarinsdottir, T, Todini, E, Trapero Arenas, J R, Wang, X, Winkler, R L, Yusupova, A & Ziel, F 2022, ' Forecasting: theory and practice ', International Journal of Forecasting, vol. 38, no. 3, pp. 705-871 . https://doi.org/10.1016/j.ijforecast.2021.11.001
Petropoulos, F, Apiletti, D, Assimakopoulos, V, Babai, M Z, Barrow, D K, Ben Taieb, S, Bergmeir, C, Bessa, R J, Bijak, J, Boylan, J E, Browell, J, Carnevale, C, Castle, J L, Cirillo, P, Clements, M P, Cordeiro, C, Cyrino Oliveira, F L, De Baets, S, Dokumentov, A, Ellison, J, Fiszeder, P, Franses, P H, Frazier, D T, Gilliland, M, Gönül, M S, Goodwin, P, Grossi, L, Grushka-Cockayne, Y, Guidolin, M, Guidolin, M, Gunter, U, Guo, X, Guseo, R, Harvey, N, Hendry, D F, Hollyman, R, Januschowski, T, Jeon, J, Jose, V R R, Kang, Y, Koehler, A B, Kolassa, S, Kourentzes, N, Leva, S, Li, F, Litsiou, K, Makridakis, S, Martin, G M, Martinez, A B, Meeran, S, Modis, T, Nikolopoulos, K, Önkal, D, Paccagnini, A, Panagiotelis, A, Panapakidis, I, Pavía, J M, Pedio, M, Pedregal, D J, Pinson, P, Ramos, P, Rapach, D E, Reade, J J, Rostami-Tabar, B, Rubaszek, M, Sermpinis, G, Shang, H L, Spiliotis, E, Syntetos, A A, Talagala, P D, Talagala, T S, Tashman, L, Thomakos, D, Thorarinsdottir, T, Todini, E, Trapero Arenas, J R, Wang, X, Winkler, R L, Yusupova, A & Ziel, F 2022, ' Forecasting: theory and practice ', International Journal of Forecasting, vol. 38, no. 3, pp. 705-871 . https://doi.org/10.1016/j.ijforecast.2021.11.001
Forecasting has always been at the forefront of decision making and planning. The uncertainty that surrounds the future is both exciting and challenging, with individuals and organisations seeking to minimise risks and maximise utilities. The large n
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2416aa12fedc731d276566fae7787cf3
Publikováno v:
Journal of Econometrics. 212:623-645
Indirect inference requires simulating realisations of endogenous variables from the model under study. When the endogenous variables are discontinuous functions of the model parameters, the resulting indirect inference criterion function is disconti
Publikováno v:
Journal of the Royal Statistical Society: Series B.
Summary We analyse the behaviour of approximate Bayesian computation (ABC) when the model generating the simulated data differs from the actual data-generating process, i.e. when the data simulator in ABC is misspecified. We demonstrate both theoreti
Autor:
Eric Renault, David T. Frazier
Indirect Inference (I‐I) estimation of structural parameters θ requires matching observed and simulated statistics, which are most often generated using an auxiliary model that depends on instrumental parameters β. The estimators of the instrumen
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c0e55500da6056271acc3763353eae02
http://wrap.warwick.ac.uk/124195/7/WRAP-indirect-inference-without-constraints-Renault-2020.pdf
http://wrap.warwick.ac.uk/124195/7/WRAP-indirect-inference-without-constraints-Renault-2020.pdf
Indirect Inference (I-I) is a popular technique for estimating complex parametric models whose likelihood function is intractable, however, the statistical efficiency of I-I estimation is questionable. While the efficient method of moments, Gallant a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::eca406a514d83945e4f89074a97ac589
We propose a new method for conducting Bayesian prediction that delivers accurate predictions without correctly specifying the unknown true data generating process. A prior is defined over a class of plausible predictive models. After observing data,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3ea2c2038eff219651add752a8c9ec5d
http://arxiv.org/abs/1912.12571
http://arxiv.org/abs/1912.12571
Publikováno v:
Journal of Econometrics. 205:55-75
We consider consistent estimation of parameters in a structural model by Indirect Inference (II) when the exogenous variables can be missing at random (MAR) endogenously. We demonstrate that II procedures that simply discard sample units with missing