Zobrazeno 1 - 10
of 151
pro vyhledávání: '"David SHEEREN"'
Autor:
Stephane Mermoz, Juan Doblas Prieto, Milena Planells, David Morin, Thierry Koleck, Florian Mouret, Alexandre Bouvet, Thuy Le Toan, David Sheeren, Yousra Hamrouni, Thierry Belouard, Eric Paillassa, Marion Carme, Michel Chartier, Simon Martel, Jean-Baptiste Feret
Publikováno v:
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol 17, Pp 13743-13764 (2024)
Remote sensing satellites allow large-scale and fast detections of forest loss. Operational forest loss detection systems have been mainly developed over tropical forests; however, it is increasingly important to have access to accurate and up-to-dat
Externí odkaz:
https://doaj.org/article/9c5a706b04d544e396e73ec3931a8bca
Autor:
Christophe SAUSSE, David SHEEREN
Publikováno v:
Sciences, Eaux & Territoires, Iss 40 (2022)
Cartographier les infrastructures agroécologiques est une étape importante pour évaluer la qualité des paysages agricoles et prédire l’impact des aménagements. La télédétection spatiale présente d’importants atouts pour atteindre cet ob
Externí odkaz:
https://doaj.org/article/0d729828e55548bd996d9a7a1e930bfe
Publikováno v:
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol 13, Pp 2899-2915 (2020)
Legacy grayscale aerial photographs represent one of the main available sources for studying the past state of the environment and its relationship to the present. However, these photographs lack spectral information thereby hindering their use in cu
Externí odkaz:
https://doaj.org/article/f98700b8185149d78abe89f8be5a1ed4
Publikováno v:
Remote Sensing, Vol 14, Iss 16, p 3975 (2022)
Poplar (Populus spp.) is a fast-growing tree planted to meet the growing global demand for wood products. In France, the country with the largest area planted with poplar in Europe, accurate and up-to-date maps of its spatial distribution are not ava
Externí odkaz:
https://doaj.org/article/8ac1c1670fd445b88b072c159533aa62
Autor:
Xavier BRIOTTET, Touria BAJJOUK, Malik CHAMI, Christophe DELACOURT, Jean-Baptiste FERET, Stephane JACQUEMOUD, Audrey MINGHELLI, David SHEEREN, Christiane WEBER, Sophie FABRE, Karine ADELINE, Emmanuelle VAUDOUR, Sandra LUQUE, Yannick DEVILLE, Kamel SOUDANI, Charles VERPOOTER
Publikováno v:
Revue Française de Photogrammétrie et de Télédétection. 224:33-58
Imaging spectroscopy has demonstrated its interest in characterizing the biochemical, biophysical and structural properties of vegetation, natural and agricultural soils, as well as artificial surfaces. Following the Hyperion mission, new space missi
Publikováno v:
Remote Sensing, Vol 14, Iss 5, p 1083 (2022)
Individual tree crown (ITC) delineation in temperate forests is challenging owing to the presence of broadleaved species with overlapping crowns. Mixed coniferous/deciduous forests with characteristics that differ with the type of tree thus require a
Externí odkaz:
https://doaj.org/article/458897fd6dd54787841ae758d465bff3
Autor:
Pierre‐Alexis Herrault, David Sheeren
Publikováno v:
Historical Ecology. :71-83
Publikováno v:
PLoS ONE, Vol 13, Iss 5, p e0197847 (2018)
Flightless saproxylic beetles were selected in order to study the impact of temporal and spatial discontinuity of forests. They were chosen because: (1) they are unable to fly, making them dispersal-limited species, (2) they have a saproxylic diet, w
Externí odkaz:
https://doaj.org/article/326b5e79622a4129b1b30ce5e6a8056e
Publikováno v:
Machine Learning
Machine Learning, Springer Verlag, 2021, ⟨10.1007/s10994-021-05972-1⟩
Machine Learning, Springer Verlag, 2021, ⟨10.1007/s10994-021-05972-1⟩
International audience; Spatial autocorrelation is inherent to remotely sensed data. Nearby pixels are more similar than distant ones. This property can help to improve the classification performance, by adding spatial or contextual features into the
Autor:
Nicolas Karasiak, Jean-François Dejoux, Mathieu Fauvel, Jérôme Willm, Claude Monteil, David Sheeren
Publikováno v:
Remote Sensing, Vol 11, Iss 21, p 2512 (2019)
Mapping forest composition using multiseasonal optical time series remains a challenge. Highly contrasted results are reported from one study to another suggesting that drivers of classification errors are still under-explored. We evaluated the perfo
Externí odkaz:
https://doaj.org/article/2532107be48b466d9e8ca3efac669e29