Zobrazeno 1 - 10
of 77
pro vyhledávání: '"David M. Lin"'
Autor:
Xiaohang Fu, Yingxin Lin, David M. Lin, Daniel Mechtersheimer, Chuhan Wang, Farhan Ameen, Shila Ghazanfar, Ellis Patrick, Jinman Kim, Jean Y. H. Yang
Publikováno v:
Nature Communications, Vol 15, Iss 1, Pp 1-17 (2024)
Abstract Recent advances in subcellular imaging transcriptomics platforms have enabled high-resolution spatial mapping of gene expression, while also introducing significant analytical challenges in accurately identifying cells and assigning transcri
Externí odkaz:
https://doaj.org/article/9e3ea5cddd3a493ea0d1a894b632c3ba
Autor:
Yingxin Lin, Lipin Loo, Andy Tran, David M. Lin, Cesar Moreno, Daniel Hesselson, G. Gregory Neely, Jean Y. H. Yang
Publikováno v:
PLoS Computational Biology, Vol 18, Iss 10 (2022)
COVID-19 patients display a wide range of disease severity, ranging from asymptomatic to critical symptoms with high mortality risk. Our ability to understand the interaction of SARS-CoV-2 infected cells within the lung, and of protective or dysfunct
Externí odkaz:
https://doaj.org/article/f97139ba33294bf397f698b1ca2da70a
Autor:
Chelsie M. Estey, Curtis W. Dewey, Mark Rishniw, David M. Lin, Jennifer Bouma, Joseph Sackman, Erica Burkland
Publikováno v:
Frontiers in Veterinary Science, Vol 4 (2017)
MRI-acquired volumetric measurements from 100 dogs with presumptive idiopathic epilepsy (IE) and 41 non-epileptic (non-IE) dogs were used to determine if hippocampal asymmetry exists in the IE as compared to the non-IE dogs. MRI databases from three
Externí odkaz:
https://doaj.org/article/b8efebbb2ada435f8afe01bfbeaad8d8
Supplementary Tables 1-2 from Shmt1 Heterozygosity Impairs Folate-Dependent Thymidylate Synthesis Capacity and Modifies Risk of Apcmin-Mediated Intestinal Cancer Risk
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ba6c25be981096fcfc1ed3cac05efbda
https://doi.org/10.1158/0008-5472.22385582.v1
https://doi.org/10.1158/0008-5472.22385582.v1
Autor:
Hani Jieun Kim, Kevin Wang, Carissa Chen, Yingxin Lin, Patrick P. L. Tam, David M. Lin, Jean Y. H. Yang, Pengyi Yang
Publikováno v:
Nature Computational Science. 1:784-790
The use of single-cell RNA-sequencing (scRNA-seq) allows observation of different cells at multi-tiered complexity in the same microenvironment. To get insights into cell identity using scRNA-seq data, we present Cepo, which generates cell-type-speci
Publikováno v:
UIST
Understanding which hand a user holds a smartphone with can help improve the mobile interaction experience. For instance, the layout of the user interface (UI) can be adapted to the holding hand. In this paper, we present HandyTrak, an AI-powered sof
Autor:
Yingxin Lin, Lipin Loo, Andy Tran, David M. Lin, Cesar Moreno, Daniel Hesselson, G. Gregory Neely, Jean Y. H. Yang
Publikováno v:
PLoS computational biology. 18(10)
COVID-19 patients display a wide range of disease severity, ranging from asymptomatic to critical symptoms with high mortality risk. Our ability to understand the interaction of SARS-CoV-2 infected cells within the lung, and of protective or dysfunct
Autor:
Kevin Wang, Patrick P.L. Tam, Jean Yh Yang, Hani Jieun Kim, Yingxin Lin, Carissa Chen, Pengyi Yang, David M. Lin
We present Cepo, a method to generate cell-type-specific gene statistics of differentially stable genes from single-cell RNA-sequencing (scRNA-seq) data to define cell identity. Cepo outperforms current methods in assigning cell identity and enhances
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::5a678bb0f7a2dbb1f2812238377b1140
https://doi.org/10.1101/2021.01.10.426138
https://doi.org/10.1101/2021.01.10.426138
Autor:
David M. Lin, Yue Cao, Agus Salim, Yingxin Lin, Pengyi Yang, Jean Yee Hwa Yang, Terence P. Speed, Hani Jieun Kim
Publikováno v:
Molecular Systems Biology
Molecular Systems Biology, Vol 16, Iss 6, Pp n/a-n/a (2020)
Molecular Systems Biology, Vol 16, Iss 6, Pp n/a-n/a (2020)
Automated cell type identification is a key computational challenge in single‐cell RNA‐sequencing (scRNA‐seq) data. To capitalise on the large collection of well‐annotated scRNA‐seq datasets, we developed scClassify, a multiscale classifica
Autor:
Ellis Patrick, Ze-Guang Han, David M. Lin, Jean Yee Hwa Yang, Shila Ghazanfar, Yingxin Lin, Xianbin Su, John C. Marioni
Single-cell RNA-sequencing has transformed our ability to examine cell fate choice. For example, in the context of development and differentiation, computational ordering of cells along ‘pseudotime’ enables the expression profiles of individual g
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::76898f7803d9b244c3b8abe375ac4ad4
https://doi.org/10.1101/841593
https://doi.org/10.1101/841593