Zobrazeno 1 - 10
of 24
pro vyhledávání: '"David M. A. Stuart"'
Autor:
Andrew Comech, David M. A. Stuart
Publikováno v:
Communications on Pure & Applied Analysis. 17:1349-1370
We study nonlinear bound states, or solitary waves, in the Dirac-Maxwell system, proving the existence of solutions in which the Dirac wave function is of the form \begin{document}$φ(x,ω)e^{-iω t}$\end{document} , with \begin{document}$ω∈(-m,ω
Autor:
David M. A. Stuart, Markus Kunze
Publikováno v:
Journal of Mathematical Analysis and Applications. 419:1351-1386
We prove exponential stability theorems of Nekhoroshev type for motion in the neighbourhood of an elliptic fixed point in Hamiltonian systems having an additional transverse component of arbitrary dimension, under certain conditions on this transvers
Autor:
David M. A. Stuart
Publikováno v:
Letters in Mathematical Physics. 104:1469-1506
We present a Hamiltonian formulation of the Schwinger model with spatial domain taken to be the circle. It is shown that, in Coulomb gauge, the Hamiltonian is a semi-bounded, self-adjoint operator which is invariant under the group $${\mathcal{M}\con
Autor:
Sophia Demoulini, David M. A. Stuart
Publikováno v:
Communications in Mathematical Physics. 290:597-632
We study a nonlinear system of partial differential equations in which a complex field (the Higgs field) evolves according to a nonlinear Schroedinger equation, coupled to an electromagnetic field whose time evolution is determined by a Chern-Simons
Autor:
David M. A. Stuart
Publikováno v:
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 463:2753-2781
We discuss the approximation of classical field theories by reduced systems of differential equations on the space of equilibria (the adiabatic limit). Various examples in which the approximation provides a useful description of the low-energy dynami
Autor:
David M. A. Stuart, Sophia Demoulini
Publikováno v:
Calculus of Variations and Partial Differential Equations. 30:523-546
We prove existence and regularity of critical points of arbitrary degree for a generalised harmonic map problem, in which there is an additional nonlocal polyconvex term in the energy, heuristically of the same order as the Dirichlet term. The proof
ManUniCast is a real-time weather and air-quality forecasting portal developed for education and outreach at the University of Manchester. The web portal manunicast.com displays model output from a WRF simulation with 20-km horizontal grid spacing ov
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______2295::56ba1af490ac5a382b08ad15c859abbf
http://www.manchester.ac.uk/escholar/uk-ac-man-scw:243827
http://www.manchester.ac.uk/escholar/uk-ac-man-scw:243827
Autor:
David M. A. Stuart
Publikováno v:
Journal de Mathématiques Pures et Appliquées. 83:541-587
The system under consideration is Einstein's equation Rμν(g)−gμνR(g)/2=8πGTμν for a pseudo-Riemannian metric g coupled to a semi-linear wave equation for a complex function φ. Assume that this wave equation on Minkowski space admits a stabl
Autor:
David M. A. Stuart
Publikováno v:
Annales Scientifiques de l’École Normale Supérieure. 37:312-362
A class of solitary wave solutions to a semi-linear wave equation on a pseudo-Riemannian manifold is studied. A construction of solutions which concentrate on geodesics is given.
Autor:
David M. A. Stuart
Publikováno v:
Comptes Rendus Mathematique. 336:615-618
Results concerning the problem of motion of test particles in the context of solitary wave solutions of the Einstein-nonlinear wave system are announced. To cite this article: D.M.A. Stuart, C. R. Acad. Sci. Paris, Ser. I 336 (2003).