Zobrazeno 1 - 10
of 94
pro vyhledávání: '"David J. Foulis"'
Autor:
David J. Foulis
Publikováno v:
International Journal of Mathematics and Mathematical Sciences, Vol 2003, Iss 44, Pp 2787-2801 (2003)
Let G be a unital group with a finite unit interval E, let n be the number of atoms in E, and let κ be the number of extreme points of the state space Ω(G). We introduce canonical order-preserving group homomorphisms ξ:ℤn→G and ρ:G→ℤκ li
Externí odkaz:
https://doaj.org/article/317a6fdc2cdf4ca0a85642d07263db4e
Autor:
Sylvia Pulmannová, David J. Foulis
Publikováno v:
Demonstratio Mathematica, Vol 51, Iss 1, Pp 1-7 (2018)
We prove that if A is a synaptic algebra and the orthomodular lattice P of projections in A is complete, then A is a factor if and only if A is an antilattice.We also generalize several other results of R. Kadison pertaining to infima and suprema in
Autor:
David J. Foulis, Sylvia Pulmannová
Publikováno v:
Order. 36:1-17
We define and study an alternative partial order, called the spectral order, on a synaptic algebra—a generalization of the self-adjoint part of a von Neumann algebra. We prove that if the synaptic algebra A is norm complete (a Banach synaptic algeb
Autor:
David J. Foulis, Sylvia Pulmannov
Publikováno v:
International Journal of Theoretical Physics. 57:1103-1119
Using a representation theorem of Erik Alfsen, Frederic Schultz, and Erling Stormer for special JB-algebras, we prove that a synaptic algebra is norm complete (i.e., Banach) if and only if it is isomorphic to the self-adjoint part of a Rickart C*-alg
Autor:
Sylvia Pulmannová, David J. Foulis
Publikováno v:
Mathematica Slovaca. 66:469-482
A synaptic algebra is a generalization of the self-adjoint part of a von Neumann algebra. For a synaptic algebra we study two weakened versions of commutativity, namely quasi-commutativity and operator commutativity, and we give natural conditions on
Autor:
Sylvia Pulmannová, David J. Foulis
Publikováno v:
Mathematica Slovaca. 64:751-776
A synaptic algebra is a generalization of the Jordan algebra of self-adjoint elements of a von Neumann algebra. We study symmetries in synaptic algebras, i.e., elements whose square is the unit element, and we investigate the equivalence relation on
Autor:
Sylvia Pulmannová, David J. Foulis
Publikováno v:
Order. 32:189-204
As is well-known, every generalized effect algebra can be embedded as a maximal proper ideal in an effect algebra called its unitization. We show that a necessary and sufficient condition that a generalized pseudo effect algebra can similarly be embe
Autor:
David J. Foulis, S. Pulmannová
Publikováno v:
Demonstratio Mathematica, Vol 47, Iss 1, Pp 1-21 (2014)
In this article, we study the center of a generalized effect algebra (GEA), relate it to the exocenter, and in case the GEA is centrally orthocomplete (a COGEA), relate it to the exocentral cover system. Our main results are that the center of a COGE
Autor:
David J. Foulis, Sylvia Pulmannová
Publikováno v:
Foundations of Physics. 43:948-968
A synaptic algebra is a generalization of the self-adjoint part of a von Neumann algebra. In this article we extend to synaptic algebras the type-I/II/III decomposition of von Neumann algebras, AW*-algebras, and JW-algebras.
27 pages
27 pages
A synaptic algebra $A$ is a generalization of the self-adjoint part of a von Neumann algebra. We study a linear subspace $V$ of $A$ in regard to the question of when $V$ is a vector lattice. Our main theorem states that if $V$ contains the identity e
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::234fad724b6634447bd110a20eecbafb
http://arxiv.org/abs/1605.06987
http://arxiv.org/abs/1605.06987