Zobrazeno 1 - 10
of 58
pro vyhledávání: '"David Ginsbourger"'
Autor:
Patric Wyss, David Ginsbourger, Haochang Shou, Christos Davatzikos, Stefan Klöppel, Ahmed Abdulkadir
Publikováno v:
Scientific Reports, Vol 13, Iss 1, Pp 1-12 (2023)
Abstract Effective clinical decision procedures must balance multiple competing objectives such as time-to-decision, acquisition costs, and accuracy. We describe and evaluate POSEIDON, a data-driven method for PrOspective SEquentIal DiagnOsis with Ne
Externí odkaz:
https://doaj.org/article/c555cf2deb1a4b63bc8911e2b7aa85ca
Publikováno v:
Journal of Statistical Software, Vol 51, Iss 1 (2012)
We present two recently released R packages, DiceKriging and DiceOptim, for the approximation and the optimization of expensive-to-evaluate deterministic functions. Following a self-contained mini tutorial on Kriging-based approximation and optimizat
Externí odkaz:
https://doaj.org/article/2b4e0a22f9dd40cfab4ce4453bbbc6fa
Publikováno v:
Machine Learning, Optimization, and Data Science ISBN: 9783030954666
We propose a novel approach for solving inverse-problems with high-dimensional inputs and an expensive forward mapping. It leverages joint deep generative modelling to transfer the original problem spaces to a lower dimensional latent space. By joint
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f19ebf7b23bf3a250e93857b38b9379c
Autor:
Christos Davatzikos, Ahmed Abdulkadir, David Ginsbourger, Patric Wyss, Stefan Klöppel, Haochang Shou
Publikováno v:
Wyss, Patric; Ginsbourger, David; Shou, Haochang; Davatzikos, Christos; Klöppel, Stefan; Abdulkadir, Ahmed (2023). Adaptive data-driven selection of sequences of biological and cognitive markers in pre-clinical diagnosis of dementia. Scientific Reports, 13(1), p. 6406. Nature Publishing Group 10.1038/s41598-023-32867-z
Combining the right—potentially invasive and expensive, markers at the appropriate time is critical to obtain reliable yet economically sustainable decisions in the preclinical diagnosis of dementia. We propose a data-driven analytical framework to
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::fe342528d3efabedf58963ba7d1fcffa
https://doi.org/10.1101/2021.10.26.21265515
https://doi.org/10.1101/2021.10.26.21265515
Publikováno v:
Geophysical Journal International, vol. 228, no. 2, pp. 839-856
SUMMARY We consider lithological tomography in which the posterior distribution of (hydro)geological parameters of interest is inferred from geophysical data by treating the intermediate geophysical properties as latent variables. In such a latent va
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7d39581e439f00669398f48d81108556
http://arxiv.org/abs/2110.05210
http://arxiv.org/abs/2110.05210
Publikováno v:
Gautier, Athénaïs; Ginsbourger, David; Pirot, Guillaume (August 2021). Goal-oriented adaptive sampling under random field modelling of response probability distributions. ESAIM: Proceedings and Surveys, 71, pp. 89-100. EDP Sciences 10.1051/proc/202171108
University of Western Australia
ESAIM: Proceedings and Surveys, Vol 71, Pp 89-100 (2021)
University of Western Australia
ESAIM: Proceedings and Surveys, Vol 71, Pp 89-100 (2021)
In the study of natural and artificial complex systems, responses that are not completely determined by the considered decision variables are commonly modelled probabilistically, resulting in response distributions varying across decision space. We c
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::fd8b19f8980bbe4f9539eee0a4fc121f
https://boris.unibe.ch/168972/1/proc2107108.pdf
https://boris.unibe.ch/168972/1/proc2107108.pdf
Publikováno v:
Annals of Applied Statistics
Improving and optimizing oceanographic sampling is a crucial task for marine science and maritime resource management. Faced with limited resources in understanding processes in the water column, the combination of statistics and autonomous systems p
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d17d768569999e444f6b66e52e2b1899
https://hdl.handle.net/11250/2826156
https://hdl.handle.net/11250/2826156
Publikováno v:
Chevalier, Clément; Martius, Olivia; Ginsbourger, David (2020). Modeling non-stationary extreme dependence with stationary max-stable processes and multidimensional scaling. Journal of computational and graphical statistics : JCGS, 30(3), pp. 745-755. American Statistical Association 10.1080/10618600.2020.1844213
Modeling the joint distribution of extreme weather events in multiple locations is a challenging task with important applications. In this study, we use max-stable models to study extreme daily precipitation events in Switzerland. The non-stationarit
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::47dd0da4dffdb0f6bea8ed98deb92cfb
https://boris.unibe.ch/148264/1/chevalier_2020_a_modeling.pdf
https://boris.unibe.ch/148264/1/chevalier_2020_a_modeling.pdf
Publikováno v:
Journal of Global Optimization
Journal of Global Optimization, Springer Verlag, 2020, 76, pp.69-90. ⟨10.1007/s10898-019-00839-1⟩
Journal of Global Optimization, 2020, 76, pp.69-90. ⟨10.1007/s10898-019-00839-1⟩
Journal of Global Optimization, Springer Verlag, 2020, 76, pp.69-90. ⟨10.1007/s10898-019-00839-1⟩
Journal of Global Optimization, 2020, 76, pp.69-90. ⟨10.1007/s10898-019-00839-1⟩
International audience; The challenge of taking many variables into account in optimization problems may be overcome under the hypothesis of low effective dimensionality. Then, the search of solutions can be reduced to the random embedding of a low d
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e3e5f90a902e6a524af501b30682058a
https://hal.archives-ouvertes.fr/hal-01508196
https://hal.archives-ouvertes.fr/hal-01508196
Autor:
Jean-Michel Loubes, Alexandra Suvorikova, François Bachoc, Vladimir Spokoiny, David Ginsbourger
Publikováno v:
Electron. J. Statist. 14, no. 2 (2020), 2742-2772
Bachoc, François; Suvorikova, Alexandra; Ginsbourger, David; Loubes, Jean-Michel; Spokoiny, Vladimir (2020). Gaussian processes with multidimensional distribution inputs via optimal transport and Hilbertian embedding. Electronic journal of statistics, 14(2), pp. 2742-2772. Institute of Mathematical Statistics 10.1214/20-EJS1725
Bachoc, François; Suvorikova, Alexandra; Ginsbourger, David; Loubes, Jean-Michel; Spokoiny, Vladimir (2020). Gaussian processes with multidimensional distribution inputs via optimal transport and Hilbertian embedding. Electronic journal of statistics, 14(2), pp. 2742-2772. Institute of Mathematical Statistics 10.1214/20-EJS1725
In this work, we investigate Gaussian Processes indexed by multidimensional distributions. While directly constructing radial positive definite kernels based on the Wasserstein distance has been proven to be possible in the unidimensional case, such
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2efbbf871105b9510e1349196aa25ff4