Zobrazeno 1 - 10
of 22
pro vyhledávání: '"David Gepner"'
Autor:
David Gepner
Publikováno v:
Cyclic Cohomology at 40: Achievements and Future Prospects. :161-184
Publikováno v:
12516-12624
International mathematics research notices
International mathematics research notices
We develop an $\infty $-categorical version of the classical theory of polynomial and analytic functors, initial algebras, and free monads. Using this machinery, we provide a new model for $\infty $-operads, namely $\infty $-operads as analytic monad
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::cc0332352d45601ea7b4577a8f43e959
https://hdl.handle.net/11250/3053119
https://hdl.handle.net/11250/3053119
Autor:
Ulrich Bunke, David Gepner
Publikováno v:
Memoirs of the American Mathematical Society. 269
Publikováno v:
Journal of the European Mathematical Society. 20:459-487
We identify the $K$-theoretic fiber of a localization of ring spectra in terms of the $K$-theory of the endomorphism algebra spectrum of a Koszul-type complex. Using this identification, we provide a negative answer to a question of Rognes for $n>1$
Autor:
David Gepner
Publikováno v:
Handbook of Homotopy Theory ISBN: 9781351251624
This chapter deals with deformations of commutative algebras. Higher algebra is the study of algebraic structures that arise in the setting of higher category theory. Higher algebra generalizes ordinary algebra, or algebra in the setting of ordinary
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::c4df1f48b1ded5d65068695cde4ea20a
https://doi.org/10.1201/9781351251624-13
https://doi.org/10.1201/9781351251624-13
Autor:
David Gepner, Joachim Kock
Publikováno v:
Forum Mathematicum. 29:617-652
After developing the basic theory of locally cartesian localizations of presentable locally cartesian closed ∞ ${\infty}$ -categories, we establish the representability of equivalences and show that univalent families, in the sense of Voevodsky, fo
Autor:
David Gepner, Jeremiah Heller
We establish, in the setting of equivariant motivic homotopy theory for a finite group, a version of tom Dieck's splitting theorem for the fixed points of a suspension spectrum. Along the way we establish structural results and constructions for equi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::16cdfea07ab9acb3b7bde56d2bc787e4
Publikováno v:
Transactions of the American Mathematical Society. 368:1435-1465
We extend the K K -theory of endomorphisms functor from ordinary rings to (stable) ∞ \infty -categories. We show that K E n d ( − ) \mathrm {KEnd}(-) descends to the category of noncommutative motives, where it is corepresented by the noncommutat
Autor:
Rune Haugseng, David Gepner
Publikováno v:
Advances in Mathematics
We set up a general theory of weak or homotopy-coherent enrichment in an arbitrary monoidal ∞-category. Our theory of enriched ∞-categories has many desirable properties; for instance, if the enriching ∞-category V is presentably symmetric mono