Zobrazeno 1 - 10
of 12
pro vyhledávání: '"David Eric Edmunds"'
Publikováno v:
Функциональный анализ и его приложения. 55:65-76
Неравенства Харди были в течение более чем века важным объектом исследования, и за последние два десятка лет наблюдался целый поток важ
Publikováno v:
Journal of Approximation Theory. 207:76-97
Let s n ( T ) denote the n th approximation, isomorphism, Gelfand, Kolmogorov or Bernstein number of the Hardy-type integral operator T given by T f ( x ) = v ( x ) ? a x u ( t ) f ( t ) d t , x ? ( a , b ) ( - ∞ < a < b < + ∞ ) and mapping a Ban
Autor:
Jan Lang, David Eric Edmunds
Sharp upper and lower estimates are obtained of the approximation numbers of a Sobolev embedding and an integral operator of Volterra type. These lead to asymptotic formulae for the approximation numbers and certain other s-numbers.
Comment: 10
Comment: 10
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5bdc13f886ef4cff5281c3894edcfbdb
Publikováno v:
Bounded and Compact Integral Operators
Preface. Acknowledgments. Basic notation. 1. Hardy-type operators. 2. Fractional integrals on the line. 3. One-sided maximal functions. 4. Ball fractional integrals. 5. Potentials on RN. 6. Fractional integrals on measure spaces. 7. Singular numbers.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::400826a99671e983e688a2a2457bd75a
https://doi.org/10.1007/978-94-015-9922-1
https://doi.org/10.1007/978-94-015-9922-1
Autor:
David Eric Edmunds, Hans Triebel
Publikováno v:
Journal of the London Mathematical Society. :331-339
On etudie l'equation superlineaire (Δu) (x)−u(x)=f(x)+|u(x)| m+ e, x∈R n , ou m∈N et 0
Publikováno v:
Journal of the London Mathematical Society. :471-489
Autor:
L. A. Peletier, David Eric Edmunds
Publikováno v:
Journal of the London Mathematical Society. :21-31
Autor:
L. A. Peletier, David Eric Edmunds
Publikováno v:
Journal of the London Mathematical Society. :95-100
Autor:
R. H. Dyer, David Eric Edmunds
Publikováno v:
Journal of the London Mathematical Society. :93-99
Publikováno v:
Journal of Mathematical Inequalities; Sep2023, Vol. 17 Issue 3, p1165-1178, 14p