Zobrazeno 1 - 10
of 248
pro vyhledávání: '"David Eisenbud"'
Autor:
David Eisenbud, Sorin Popescu
Publikováno v:
Le Matematiche, Vol 53, Iss 3, Pp 5-14 (1998)
See directly the article
Externí odkaz:
https://doaj.org/article/a538dfb5cf334eb9b38277fcfaa3a1b4
Autor:
David Eisenbud, Jeremy Gray
Publikováno v:
Bulletin of the American Mathematical Society. 60:371-406
Francis Sowerby Macaulay began his career working on Brill and Noether’s theory of algebraic plane curves and their interpretation of the Riemann–Roch and Cayley–Bacharach theorems; in fact it is Macaulay who first stated and proved the modern
Publikováno v:
Oberwolfach Reports. 18:1519-1577
Autor:
David Eisenbud
Publikováno v:
Free Resolutions in Commutative Algebra and Algebraic Geometry ISBN: 9781003420187
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::51e38277f35774204b493a6133e13910
https://doi.org/10.1201/9781003420187-7
https://doi.org/10.1201/9781003420187-7
Autor:
Hailong Dao, David Eisenbud
The Burch index is a new invariant of a local ring R whose positivity implies a kind of linearity in resolutions of R-modules. We show that if R has depth zero and Burch index at least 2, then any non-free 7th R-syzygy contains the residue field as a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::eff8a3b9eaac6c6d755aa37b7524c0bc
http://arxiv.org/abs/2208.05427
http://arxiv.org/abs/2208.05427
Publikováno v:
Journal of Algebra. 571:15-31
We study Betti numbers of graded finitely generated modules over a quadratic complete intersection. In the case of codimension 1, we give a natural class of quadratic forms Q whose Clifford algebras are division rings, and deduce the possible Betti n
Autor:
Frank-Olaf Schreyer, David Eisenbud
Publikováno v:
Commutative Algebra. :35-47
Let M M be a finitely generated Cohen-Macaulay module of codimension m m over a Gorenstein Ring R = S / I R = S/I , where S S is a regular ring. We show how to form a quasi-isomorphism ϕ \phi from an R R -free resolution of M M to the dual of an R R
Autor:
David Eisenbud, Irena Peeva
Publikováno v:
Journal of the European Mathematical Society. 23:845-867
Autor:
Hailong Dao, David Eisenbud
We study monomial ideals with linear presentation or partially linear resolution. We give combinatorial characterizations of linear presentation for square-free ideals of degree 3, and for primary ideals whose resolutions are linear except for the la
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4c793208bdbee6f79f053e2baabec7ab
http://arxiv.org/abs/2201.11263
http://arxiv.org/abs/2201.11263