Zobrazeno 1 - 10
of 164
pro vyhledávání: '"David E. Edmunds"'
Publikováno v:
Mathematics, Vol 8, Iss 9, p 1538 (2020)
Let X be a real Banach space with dual X∗ and suppose that F:X→X∗. We give a characterisation of the property that F is locally proper and establish its stability under compact perturbation. Modifying an recent result of ours, we prove that any
Externí odkaz:
https://doaj.org/article/2d11740ae07e4ad19b2bb4202eb77699
Publikováno v:
Electronic Journal of Differential Equations, Vol 2005, Iss 54, Pp 1-22 (2005)
In this paper we study the stability of the single internal spike solution of a simplified Gierer-Meinhardt' system of equations in one space dimension. The linearization around this spike consists of a selfadjoint differential operator plus a non-lo
Externí odkaz:
https://doaj.org/article/e069fe63364a4aa6ba31959983e74c01
Publikováno v:
Journal of Function Spaces and Applications, Vol 2, Iss 1, Pp 55-69 (2004)
A trace inequality for the generalized Riesz potentials Iα(x) is established in spaces Lp(x) defined on spaces of homogeneous type. The results are new even in the case of Euclidean spaces. As a corollary a criterion for a two-weighted inequality in
Externí odkaz:
https://doaj.org/article/939394bc13334b8fb88ade754b741014
The theory of Lebesgue and Sobolev spaces with variable integrability is experiencing a steady expansion, and is the subject of much vigorous research by functional analysts, function-space analysts and specialists in nonlinear analysis. These spaces
Publikováno v:
Mathematische Nachrichten. 292:2174-2188
Autor:
Alexander Meskhi, David E. Edmunds
Publikováno v:
Studia Mathematica. 249:143-162
Publikováno v:
Results in Mathematics. 76
New scales of grand variable exponent Hajlasz–Sobolev and Holder spaces are introduced. Embeddings between these spaces are established under the log-Holder continuity condition on exponent functions of spaces. Spaces are defined, generally speakin
We compute the precise value of the measure of noncompactness of Sobolev embeddings $W_0^{1,p}(D)\hookrightarrow L^p(D)$, $p\in(1,\infty)$, on strip-like domains $D$ of the form $\mathbb{R}^k\times\prod\limits_{i=1}^{n-k}(a_i,b_i)$. We show that such
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::507262d59be47c7f0553aaaf391c5bf6
http://arxiv.org/abs/2006.07948
http://arxiv.org/abs/2006.07948
Autor:
David E. Edmunds, Houry Melkonian
Publikováno v:
Proceedings of the American Mathematical Society. 147:229-238
This is the author accepted manuscript. The final version is available from American Mathematical Society via the DOI in this record
Autor:
David E. Edmunds, Aleš Nekvinda
Publikováno v:
Journal of Mathematical Analysis and Applications. 459:879-892
Let Ω be a bounded open subset of R n with a mild regularity property, let m ∈ N and p ∈ ( 1 , ∞ ) , and let W m , p ( Ω ) be the usual Sobolev space of order m based on L p ( Ω ) ; the closure in W m , p ( Ω ) of the smooth functions with