Zobrazeno 1 - 10
of 22
pro vyhledávání: '"David Burguet"'
Autor:
David Burguet
Publikováno v:
Annales Henri Poincaré.
Autor:
David Burguet
Publikováno v:
Nonlinearity. 34:4897-4922
For a d-dimensional cellular automaton with d $\ge$ 1 we introduce a rescaled entropy which estimates the growth rate of the entropy at small scales by generalizing previous approaches [1, 9]. We also define a notion of Lyapunov exponent and proves a
Autor:
Ruxi Shi, David Burguet
Publikováno v:
Discrete & Continuous Dynamical Systems. 42:1105
A zero-dimensional (resp. symbolic) flow is a suspension flow over a zero-dimensional system (resp. a subshift). We show that any topological flow admits a principal extension by a zero-dimensional flow. Following [Bur19] we deduce that any topologic
Autor:
Tomasz Downarowicz, David Burguet
Publikováno v:
Journal of Dynamics and Differential Equations. 31:815-852
For a topological dynamical system $(X, T)$ we define a uniform generator as a finite measurable partition such that the symmetric cylinder sets in the generated process shrink in diameter uniformly to zero. The problem of existence and optimal cardi
Autor:
David Burguet
Publikováno v:
Dynamical Systems. 32:391-409
For a given metrizable space X, we study continuity properties of the entropy as function not only of the measure but also of the dynamical system on X. We introduce the notion of robust tail entropy, which implies upper semicontinuity of the topolog
Autor:
David Burguet, Gang Liao
We prove that every $\mathcal{C}^{r}$ diffeomorphism with $r>1$ on a three-dimensional manifold admits symbolic extensions, i.e. topological extensions which are subshifts over a finite alphabet. This answers positively a conjecture of Downarowicz an
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8e9c7be39452e5d0efe9443b536f91ab
https://hal.archives-ouvertes.fr/hal-02346575
https://hal.archives-ouvertes.fr/hal-02346575
Autor:
David Burguet
Publikováno v:
Journal of Differential Equations
Journal of Differential Equations, Elsevier, 2019, 267 (7), pp.4320-4372. ⟨10.1016/j.jde.2019.05.001⟩
Journal of Differential Equations, Elsevier, 2019, 267 (7), pp.4320-4372. ⟨10.1016/j.jde.2019.05.001⟩
International audience; Building on the theory of symbolic extensions and uniform generators for discrete transformations we develop a similar theory for topological regular flows. In this context a symbolic extension is given by a suspension flow ov
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b3557c9eb7ba9ebad6c4d63f18c8bd3c
https://hal.sorbonne-universite.fr/hal-02172994/document
https://hal.sorbonne-universite.fr/hal-02172994/document
Autor:
David Burguet
Publikováno v:
Ergodic Theory and Dynamical Systems
Ergodic Theory and Dynamical Systems, Cambridge University Press (CUP), In press, ⟨10.1017/etds.2019.7⟩
Ergodic Theory and Dynamical Systems, Cambridge University Press (CUP), In press, ⟨10.1017/etds.2019.7⟩
We show that systems with some specification properties are topologically or almost Borel universal, in the sense that any aperiodic subshift with lower entropy may be topologically or almost Borel embedded. This improves, with elementary tools, prev
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4a2649652b216f2669aa24fd1d7795ae
http://arxiv.org/abs/1901.00666
http://arxiv.org/abs/1901.00666
Autor:
David Burguet
We prove that periodic asymptotic expansiveness introduced in \cite{em} implies the equidistribution of periodic points to measures of maximal entropy. Then following Yomdin's approach \cite{Yom} we show by using semi-algebraic tools that $C^\infty$
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4f28da879d3dac84f276729604e34aef
https://hal.science/hal-03941602
https://hal.science/hal-03941602
Autor:
David Burguet
Publikováno v:
Communications in Mathematical Physics
Communications in Mathematical Physics, Springer Verlag, In press, ⟨10.1007/s00220-019-03516-2⟩
Communications in Mathematical Physics, Springer Verlag, In press, ⟨10.1007/s00220-019-03516-2⟩
For a $$C^\infty $$ map f on a compact manifold M we prove that for a Lebesgue randomly picked point x there is an empirical measure from x with entropy larger than or equal to the top Lyapunov exponent of $$\Lambda \, df:\Lambda \,TM\circlearrowleft
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3feb4793a8fc259ea9b4114e393be97a
https://hal.archives-ouvertes.fr/hal-02346558
https://hal.archives-ouvertes.fr/hal-02346558